
A Dependent Type Theory
with Abstractable Names

Andrew M. Pittsa,1,2, Justus Matthiesen a,3,4 and
Jasper Derikxb,5

a Computer Laboratory, University of Cambridge, Cambridge CB3 0FD, UK

b Radboud University, 6500 GL Nijmegen, Netherlands

Abstract

This paper describes a version of Martin-Löf’s dependent type theory extended with names and constructs
for freshness and name-abstraction derived from the theory of nominal sets. We aim for a type theory
for computing and proving (via a Curry-Howard correspondence) with syntactic structures which captures
familiar, but informal, ‘nameful’ practices when dealing with binders.

Keywords: binding, dependent types, names, nominal sets

1 Introduction

We aim to develop a constructive version of nominal logic [15] as a dependent type

theory. From a programming point of view we would like to combine Agda/Coq

style theorem-proving (particularly inductively defined indexed families of types and

dependent pattern-matching) with FreshML [21] style meta-programming for syntax

with binding operations. Achieving these aims requires a constructive treatment

of the nominal sets notion of freshness [16, Chapter 3]. Here we give one such

treatment as an extension of Martin-Löf type theory.

The functional programming language FreshML is impure: it ensures freshness

of names via generativity and (hence) avoids checking that a locally scoped name

1 Partially supported by the UK EPSRC program grant EP/K008528/1, Rigorous Engineering for Main-
stream Systems (REMS).
2 Email: andrew.pitts@cl.cam.ac.uk
3 Supported by the UK EPSRC leadership fellowship (Peter Sewell) grant EP/H005633/1, Semantic Foun-
dations for Real-World Systems.
4 Email: justus.matthiesen@cl.cam.ac.uk
5 Email: jasperderikx@gmail.com

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 312 (2015) 19–50

1571-0661/© 2015 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2015.04.003

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:andrew.pitts@cl.cam.ac.uk
mailto:justus.matthiesen@cl.cam.ac.uk
mailto:jasperderikx@gmail.com
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2015.04.003
http://dx.doi.org/10.1016/j.entcs.2015.04.003
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


does not occur in the support of the meaning of the expression in which it is used.

The original version of the language, ‘FreshML 2000’ [17], attempted to carry out

such checks by inferring freshness information as part of the type system, but was

found to be too restrictive in the context of a Turing-powerful language – the main

difficulty being how to decide whether a name n is fresh for a (higher-order) function

f , written n # f . Within nominal sets [16], the definition of the freshness relation

involves quantification over finite sets of names: n # f means that there exists a

finite set of names supporting f that does not contain the name n. In practice, one

often relies upon the fact that this relation is invariant under permuting names and

uses the following sound method that reflects on a concrete, meta-theoretic version

of freshness, viz. non-occurrence:

To prove n # f , pick a name n′ that does not occur in the current context (that

is, one that is meta-theoretically fresh) and prove (n n′) · f = f , which in the

presence of function extensionality, is equivalent to showing (∀x) (n n′) · (f x) =

f((n n′)·x). (As usual, (n n′)·x denotes the result of transposing names n and n′

in an element x of a nominal set.) Since n′ # f holds by choice of n′, applying the

permutation (n n′) that swaps n and n′ we get n = (n n′) · n′ # (n n′) · f = f ,

as required.

This proof principle was adopted by nominal algebra [9]/nominal equational logic [5]

and emphasised particularly in Clouston’s thesis [4] and the recent work of Crole

and Nebel [7], which both make freshness assertions

Γ � n # t : T

equivalent to equality judgements of the form

Γ[n′ : N ] � (n n′) � t = t : T (1)

where (n n′)� is the (object-level) name-swapping operation, the context Γ contains

hypotheses about freshness of names for free variables and Γ[n : N ] 6 adds to Γ an

extra freshness hypotheses for a (meta-theoretically) new name n of some sort N .

Equality jugements, such as (1), will be axiomatized by the type theory introduced

in Sect. 2.

We call this delegation of freshness to definitional equality definitional fresh-

ness. It means that equality judgements get intertwined with typing judgements

in an extra way from what already happens in dependently typed systems. The

advantage of this approach is that we can give ‘pure’ versions of locally scoped

names and concretion of name-abstractions with a semantics just using nominal

sets, rather than, for example, nominal restriction sets [16, section 9.1]. The next

section describes such a dependent type theory with abstractable names. Since it is

an extension of Martin-Löf’s Type Theory with many of the features of FreshML,

we call it FreshMLTT. Section 3 describes the intended model of FreshMLTT; we

6 Instead of using the ‘flattened’ contexts {n1 # x1 : T1,n2 # x2 : T2, . . .} from [24,9,5,4,7], here we
will use ‘bunched’ ones, as in [19,18,3], because they fit better with the ‘telescopic’ nature of contexts in
dependent type theory.

A.M. Pitts et al. / Electronic Notes in Theoretical Computer Science 312 (2015) 19–5020



Download English Version:

https://daneshyari.com/en/article/422715

Download Persian Version:

https://daneshyari.com/article/422715

Daneshyari.com

https://daneshyari.com/en/article/422715
https://daneshyari.com/article/422715
https://daneshyari.com

