
Formalisation in Constructive Type Theory of
Stoughton’s Substitution for the Lambda

Calculus

Álvaro Tasistro 1 Ernesto Copello 2 Nora Szasz 3

Universidad ORT Uruguay,
Montevideo, Uruguay

Abstract

In [25], Alley Stoughton proposed a notion of (simultaneous) substitution for the Lambda calculus as
formulated in its original syntax –i.e. with only one sort of symbols (names) for variables– and without
identifying α-convertible terms. According to such formulation, the action of substitution on terms is
defined by simple structural recursion and an interesting theory arises concerning the connection to α-
conversion. In this paper we present a formalisation of Stoughton’s work in Constructive Type Theory
using the language Agda, which reaches up to the Substitution Lemma for α-conversion. The development
has been quite inexpensive e.g. in labour cost, and we are able to formulate some improvements over the
original presentation. For instance, our definition of α-conversion is just syntax directed and we prove it to
be an equivalence relation in an easy way, whereas in [25] the latter was included as part of the definition and
then proven to be equivalent to an only nearly structural definition as corollary of a lengthier development.
As a result of this work we are inclined to assert that Stoughton’s is the right way to formulate the Lambda
calculus in its original, conventional syntax and that it is a formulation amenable to fully formal treatment.

Keywords: Formal Metatheory, Lambda Calculus, Constructive Type Theory

1 Introduction

The Lambda calculus was introduced by Church [5] without a definition of sub-
stitution. The complexity of this operation was actually a prime motivation for
Curry and Feys to provide the first definition in [7], somewhat as follows:

1 Email: tasistro@ort.edu.uy
2 Email: copello@ort.edu.uy
3 Email: szasz@ort.edu.uy

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 312 (2015) 215–230

1571-0661/© 2015 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2015.04.013

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:tasistro@ort.edu.uy
mailto:copello@ort.edu.uy
mailto:szasz@ort.edu.uy
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2015.04.013
http://dx.doi.org/10.1016/j.entcs.2015.04.013
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


x[y := P ] =

⎧⎨
⎩

P if x = y

x if x �= y

(MN)[y := P ] = M [y := P ] N [y := P ]

(λx.M)[y := P ] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λx.M if y not free in λx.M

λx.M [y := P ] if y free in λx.M and x not free in P

λz.(M [x := z])[y := P ] if y free in λx.M and x free in P,

where z is the first variable not free in MP.

The complexity lies in the last case, i.e. the one requiring to rename the bound
variable of the abstraction wherein the substitution is performed. The recursion
proceeds, evidently, on the size of the term; but, to ascertain that M [x := z] is of
a size lesser than that of λx.M , a proof has to be given and, since the renaming
is effected by the very same operation of substitution that is being defined, such
a proof must be simultaneous to the justification of the well-foundedness of the
whole definition. This is extremely difficult to formalise in any of the several proof
assistants available. Besides, there is the inconvenience that proofs of properties of
the substitution operation have to be conducted by induction on the size of terms
and have generally three subcases, with two invocations to the induction hypothesis
in the subcase considered above. These observations prompt the search for a simpler
definition.

As is well known, several of the proposed solutions take the path of modifying
the syntax of the language as used above. Such a decision is indeed well motivated,
especially if the alternative is to employ for the local or bound names a type of sym-
bol different from the one of the variables: that was, to begin with, Frege’s choice
in the first fully fledged formal language [11], which featured universal quantifica-
tion as a binder, and was later made again by at least Gentzen [12], Prawitz [22]
and Coquand [6]. Within the field of machine-checked meta-theory, McKinna and
Pollack[18] used the approach to develop substantial work in the proof assistant
Lego, concerning both the pure Lambda calculus and Pure Type Systems. Now,
the method is not without some overhead: there must be one substitution operation
for each kind of name and a well-formedness predicate to ensure that bound names
do not occur unbound –so that induction on terms becomes in fact induction on
this predicate. Another alternative is of course de Bruijn’s nameless syntax [8] or
its more up-to-date version locally nameless syntax [2,4], which uses names for the
free or global variables and the indices counting up to the binding abstractor for
the occurrences of local parameters. That is to say that locally nameless syntax is
a variation of Frege style syntax in which the local parameters are nameless. The
overhead in this case is the following: a well-formedness predicate ensures that valid

Á. Tasistro et al. / Electronic Notes in Theoretical Computer Science 312 (2015) 215–230216



Download English Version:

https://daneshyari.com/en/article/422725

Download Persian Version:

https://daneshyari.com/article/422725

Daneshyari.com

https://daneshyari.com/en/article/422725
https://daneshyari.com/article/422725
https://daneshyari.com

