
On Convergence-sensitive Bisimulation and

the Embedding of CCS in Timed CCS

Roberto M. Amadio1 ,2

Université Paris Diderot

Abstract

We propose a notion of convergence-sensitive bisimulation that is built just over the notions of (internal)
reduction and of (static) context. In the framework of timed CCS, we characterise this notion of ‘contextual’
bisimulation via the usual labelled transition system. We also remark that it provides a suitable semantic
framework for a fully abstract embedding of untimed processes into timed ones. Finally, we show that the
notion can be refined to include sensitivity to divergence.

Keywords: Bisimulation, convergence, timed CCS.

1 Introduction

The main motivation for this work is to build a notion of convergence-sensitive bisim-

ulation from first principles, namely from the notions of internal reduction and of

(static) context. A secondary motivation is to understand how asynchronous/untimed

behaviours can be embedded fully abstractly into synchronous/timed ones. Because

the notion of convergence is very much connected to the notion of time, it seems

that a convergence-sensitive bisimulation should find a natural application in a

synchronous/timed context. Thus, in a nutshell, we are looking for an ‘intuitive’ se-

mantic framework that spans both untimed/asynchronous and timed/synchronous

models.

For the sake of simplicity we will place our discussion in the well-known frame-

work of (timed) CCS. We assume the reader is familiar with CCS [10]. Timed CCS

(TCCS) is a ‘timed’ version of CCS whose basic principle is that time passes ex-

actly when no internal computation is possible. This notion of ‘time’ is inspired by

1 PPS, UMR-7126. Work partially supported by ANR-06-SETI-010-02.
2 Email: amadio@pps.jussieu.fr

Electronic Notes in Theoretical Computer Science 242 (2009) 3–17
www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.06.010
1571-0661 © 2009 Elsevier B.V. Open access under CC BY-NC-ND license.

mailto:amadio@pps.jussieu.fr
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

early work on the Esterel synchronous language [3], and it has been formalised in

various dialects of CCS [14,12,6]. Here we shall follow the formalisation in [6].

As in CCS, one models the internal computation with an action τ while the pas-

sage of (discrete) time is represented by an action tick that implicitly synchronizes

all the processes and moves the computation to the next instant. 3

In this framework, the basic principle we mentioned is formalised as follows:

P
tick
−−→ · iff P �

τ
−→ ·

where we write P
μ
−→ · if P can perform an action μ. TCCS is designed so that if

P is a process built with the usual CCS operators and P cannot perform τ actions

then P
tick
−−→ P . In other terms, CCS processes are time insensitive. To compensate

for this property, one introduces a new binary operator P �Q, called else next, that

tries to run P in the current instant and, if it fails, runs Q in the following instant.

We assume countably many names a, b, . . . For each name a there is a commu-

nication action a and a co-action a. We denote with α, β, . . . the usual CCS actions

which are composed of either an internal action τ or of a communication action

a, a, We denote with μ, μ′, . . . either an action α or the distinct action tick.

The TCCS processes P,Q, . . . are specified by the following grammar

P ::= 0 || a.P || P + P || P | P || νa P || A(a) || P � P .

We denote with fn(P) the names free in P . We adopt the usual convention that

for each thread identifier A there is a unique defining equation A(b) = P where the

parameters b include the names in fn(P). The related labelled transition system is

specified in table 1.

Say that a process is a CCS process if it does not contain the else next operator.

The reader can easily verify that:

(1) P
tick
−−→ · if and only if P �

τ
−→ ·.

(2) If P
tick
−−→ Qi for i = 1, 2 then Q1 = Q2. One says that the passage of time is

deterministic.

(3) If P is a CCS process and P
tick
−−→ Q then P = Q. Hence CCS processes are

closed under labelled transitions.

It will be convenient to write τ.P for νa (a.P | a.0) where a /∈ fn(P), tick.P for

0 � P , and Ω for the diverging process τ.τ.

Remark 1.1 (1) In the labelled transition system in table 1, the definition of the

tick action relies on the τ action and the latter relies on the communication actions

a, a′, There is a well known method to give a direct definition of the τ action

that does not refer to the communication actions. Namely, one defines (internal)

reduction rules such as (a.P + Q | a.P ′ + Q′) → (P | P ′) which are applied modulo

a suitable structural equivalence.

3 There seems to be no standard terminology for this action. It is called ε in [14], χ in [12], σ in [6], and
sometimes ‘next’ in ‘synchronous’ languages à la Esterel [2].

R.M. Amadio / Electronic Notes in Theoretical Computer Science 242 (2009) 3–174

Download English Version:

https://daneshyari.com/en/article/422910

Download Persian Version:

https://daneshyari.com/article/422910

Daneshyari.com

https://daneshyari.com/en/article/422910
https://daneshyari.com/article/422910
https://daneshyari.com

