
Generating Hierarchical State Based
Representation From Event-B Models

Dipak L. Chaudhari1,2 Om P. Damani3
Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay,
Mumbai, India

Abstract

Many properties of a system may not be obvious just by a quick inspection of the corresponding Event-
B model. Users typically rely on animation, scenario analysis, and inspection of state transition graphs
for discovering certain behavior of the system. We propose a methodology for generating a hierarchical
representation of the system for visualising Event-B models. Our representation is succinct and it provides
multiple views to aid in better comprehension of the Event-B models.

Keywords: Event-B, Model visualization, Hierarchical state based representation

1 Introduction

In Event-B, desired global properties of the system are specified in the form of
invariants and the invariant preservation proofs ensure that these properties are
maintained by the system after execution of any enabled event[1]. However, after
execution of an enabled event, it is not obvious which events will be enabled or
disabled next. Users typically rely on animation, scenario analysis, and inspection
of state transition graphs to grasp the behavioral aspects of the system. The ProB
animator[9], with the aid of a model checker, can generate graphical visualization
of the state space of a B machine. However, because of the flat (non-hierarchical)
nature of the ProB state space representation, it becomes difficult to reduce the
complexity of the state space graphs even after employing the state space reduction
techniques[10]. In general, hierarchical state transition diagrams are found to be
useful in reducing the complexity of the state transition diagrams [6].

1 This work was supported in part by the Ministry of Human Resources Development, Government of India
and by the Tata Research Development and Design Center (TRDDC).
2 Email: dipakc@cse.iitb.ac.in
3 Email: damani@cse.iitb.ac.in

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 280 (2011) 35–46

1571-0661 © 2011 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2011.11.016
Open access under CC BY-NC-ND license. 

mailto:dipakc@cse.iitb.ac.in
mailto:damani@cse.iitb.ac.in
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2011.11.016
http://dx.doi.org/10.1016/j.entcs.2011.11.016
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/


We propose a hierarchical representation, similar to the statechart diagrams, for
visualising Event-B models. We present a top-down methodology for constructing
an abstract representation of desired granularity directly from the given Event-B
model.

2 Hierarchical Abstract State Transition Machine

To represent a discrete event system, we use a Hierarchical Abstract State Tran-
sition Machine (HASTM) representation which uses the concepts of hierarchical
states and guarded transitions similar to those in statechart diagrams [6]. In
HASTM, state-space is arranged in the form of a tree (which we call a state-
space partition tree) and the root node of the tree represents all the valid states
of the system, i.e., the states defined by the conjunction of all the invariants.

���

������	
��
 ������	
���

�����	�
 �����	��

�����	����� �����	����� ������������������������

Fig. 1: State-space partition tree for the Lift exam-
ple. The hierarchy relation is shown by dotted arrow.

The root node is partitioned into
substates based on some predicate.
The substates are in turn partitioned
further using appropriate predicates.
Figure 1 shows the state-space par-
tition tree generated by our method
(Algorithm 1) for the Lift Event-B
model 4 shown in Figure 2, given
the predicates (cf = topF loor),
(cf = botF loor), (doorOpen = T ),
and (dirUp = T ). The algorithm
starts constructing the tree from the
root node and at each node selects a partitioning predicate that minimizes the
number of transitions in the generated HASTM. This reduces the complexity of the
generated HASTM. While partitioning the tree, the algorithm also computes the
pre-states, transition guards, and the post states (defined in Section 2.1 ) for the
transitions. The final HASTM for the Lift model is shown in Figure 4.

2.1 Structure and Semantics of HASTM

If v denotes the variables of a system then the set Φ = {v|True} is the entire state
space of the system. We use the term abstract state to represent any subset of Φ
and the term concrete state or just state to represent a particular element of Φ. 5

Abstract states are usually specified using predicates. If Q(v) is a predicate with
free variables in v then we represent by Q the set of all concrete states satisfying
Q(v), i.e., Q = {v|Q(v)}. If a system is in a concrete state q, and q ∈ Q where Q is
an abstract state then the system is said to be in the abstract state Q.

HASTM is a tuple H = 〈v, S, �, Σ, T, t0〉 , where

4 The Lift Event-B model is adapted from the B model that comes with the ProB tool [9].
5 The terms abstract state and concrete state should not be confused with the terms abstract model and
concrete model which are used in context of refinements.

D.L. Chaudhari, O.P. Damani / Electronic Notes in Theoretical Computer Science 280 (2011) 35–4636



Download English Version:

https://daneshyari.com/en/article/423068

Download Persian Version:

https://daneshyari.com/article/423068

Daneshyari.com

https://daneshyari.com/en/article/423068
https://daneshyari.com/article/423068
https://daneshyari.com

