
CSP-CASL-Prover:
A Generic Tool for Process and Data

Refinement

Liam O’Reilly1 Markus Roggenbach1

Swansea University, United Kingdom

Yoshinao Isobe1,2

AIST, Tsukuba, Japan

Abstract

The specification language Csp-Casl allows one to model processes as well as data of distributed systems
within one framework. In our paper, we describe how a combination of the existing tools Hets and Csp-
Prover can solve the challenges that Csp-Casl raises on integrated theorem proving for processes and data.
For building this new tool, the automated generation of theorems and their proofs in Isabelle/HOL plays a
fundamental role. A case study of industrial strength demonstrates that our approach scales up to complex
problems.

Keywords: Process Algebra, Algebraic Specification, Theorem Proving, Functional Programming.

1 Introduction

Distributed computer applications like flight booking systems, web services, and
electronic payment systems such as the EP2 standard [2], require parallel process-
ing of data. Consequently, these systems have concurrent aspects (e.g. deadlock-
freedom) as well as data aspects (e.g. functional correctness). Often, these aspects
depend on each other.

In [22], we present the language Csp-Casl, which is tailored to the specification
of distributed systems. Csp-Casl integrates the process algebra Csp [7,23] with the
algebraic specification language Casl [15]. Its novel aspects include the combination
of denotational semantics in the process part and, in particular, loose semantics for

1 This cooperation was supported by the EPSRC Project EP/D037212/1.
2 This work was supported by KAKENHI 20500023.

Electronic Notes in Theoretical Computer Science 250 (2009) 69–84

1571-0661© 2009 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.08.018
Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


the data types covering both concepts of partiality and sub-sorting. In [5] we apply
Csp-Casl to the EP2 standard and demonstrate that Csp-Casl can deal with
problems of industrial strength.

Here, we develop theorem proving support for Csp-Casl and show that our
approach scales up to practically relevant systems such as the EP2 standard. Csp-
Casl comes with a simple, but powerful notion of refinement. Csp-Casl refinement
can be decomposed into first a refinement step on data only and then a refinement
step on processes. Data refinement is well understood in the Casl context and has
good tool support already. Thus, we focus here on process refinement. The basic
idea is to re-use existing tools for the languages Casl and Csp, namely for Casl

the tool Hets [13] and for Csp the tool Csp-Prover [8,9,10,11], both of which are
based on the theorem prover Isabelle/HOL [19]. This re-use is possible thanks to
the definition of the Csp-Casl semantics in a two step approach: First, the data
specified in Casl is translated into an alphabet of communications, which, in the
second step, is used within the processes, where the standard Csp semantics are
applied.

The main issue in integrating the tools Hets and Csp-Prover into a Csp-Casl-
Prover is to implement – in Isabelle/HOL – Csp-Casl’s construction of an alphabet
of communications out of an algebraic specification of data written in Casl. The
correctness of this construction relies on the fact that a certain relation turns out
to be an equivalence relation. [22] shows in terms of a manually proven meta
theorem that the alphabet construction works out for a large class of Casl data
specifications, which is characterised by the static semantics property ‘has local top
elements’. In Csp-Casl-Prover, we choose to prove the relation to be an equiva-
lence for each Csp-Casl specification individually. This adds an additional layer
of trust: complementing the algorithmic check of a static property, we provide a
proof in Isabelle/HOL that the construction is valid. The alphabet construction,
the formulation of the justification theorems (establishing the equivalence relation),
and their proofs can all be automatically generated.

Closely related to Csp-Casl is the specification language μCRL [4]. Here,
data types have loose semantics and are specified in equational logic with total
functions. The underlying semantics of the process algebraic part is operational.
[1] presents a μCRL-Prover based on the interactive theorem prover PVS. The
chosen approach is to represent the abstract μCRL data types directly by PVS
types, and to give a subset of μCRL processes an operational semantics. Thanks to
μCRL’s simple approach to data – neither sub-sorting nor partiality are available –
there is no need for an alphabet construction – as it is also the case in Csp-Casl in
the absence of sub-sorting and partiality. Concerning processes, Csp-Casl-Prover
provides semantics to full Csp.

Our paper is organised as follows: Section 2 introduces the Csp-Casl semantics
along with a case study from the EP2 system. Section 3 describes the existing tools
which we make use of. The overall architecture of Csp-Casl-Prover is presented in
Section 4. First we discuss how to build an alphabet to be used as a parameter for
the process type of Csp-Prover. Then we consider how integration theorems can

L. O’Reilly et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 69–8470



Download English Version:

https://daneshyari.com/en/article/423451

Download Persian Version:

https://daneshyari.com/article/423451

Daneshyari.com

https://daneshyari.com/en/article/423451
https://daneshyari.com/article/423451
https://daneshyari.com

