
Component Updates as a Boolean

Optimization Problem

Alexander Stuckenholz1

Department of Data Processing Technologies
FernUniversität in Hagen

Hagen, Germany

Abstract

Component updates always bear the risk of negatively influencing the operativeness of software systems.
Due to improper combinations of component versions, dependencies may break. In practise this often turns
out to be due to missing or incompatible interfaces and signatures (syntactical interface) but may also be
caused by changes in behavior or quality. In this paper we model the problem of finding a well-configured
system consisting of multiple component versions as a Boolean Optimization Problem. To achieve this, we
introduce objective functions and constraints that lead to most recent, minimal systems and use Branch-
and-Bound to restrict the search space.

Keywords: Component Based Software Development, Updates, Component and System Evolution,
Compatibility, Boolean Optimization, System Synthesis

1 Introduction

Never change a running system! Every system administrator knows this rule to

prevent unforeseen incompatibilities often causing breakdowns and sleepless nights.

But sometimes parts like components have to be replaced by newer versions because

of serious security holes, functional limitations or quality improvements.

By updating a system, thus replacing components by newer versions, dependen-

cies may be added or removed. The system changes over time which is called system

evolution. Most recent research investigating the source of defect of object oriented

software systems (cf. [2]) indicate that missing components or wrong component

versions are the most frequent reasons for configuration problems.

Nevertheless, there are almost no tools that are able to prevent these situations.

Tools for automated configurations which combine compositional reasoning with

1 Email: Alexander.Stuckenholz@FernUni-Hagen.de

Electronic Notes in Theoretical Computer Science 182 (2007) 187–200

1571-0661 © 2007 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.09.039
Open access under CC BY-NC-ND license. 

mailto:Alexander.Stuckenholz@FernUni-Hagen.de
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


automated versioning and dependency analysis (cf. [17]) are missing in configuration

management.

In this paper, we sketch a mechanism to construct well-configured component

based systems by combining available component versions and respecting constraints

like favoring recent versions, minimizing the count of components in a system and

minimizing the count of replacements between updates.

The system is specially designed for situations in which new component versions

are not exact substitutes of their predecessors, but introducing new dependencies

or change parts, on which other components in the system rely. We assume that in

such situations, a balanced configuration can be found by a smart combination of

available component versions. This way, we do not require backward compatibility

between component versions, which is the basis of most packaging systems in this

area, but allow arbitrary evolution of involved components.

The paper is structured as follows. The next section introduces the original

problem of incompatible component updates in more detail. Section 1.2 mentions

related approaches like Linux packaging to solve the update-problem and the ap-

plication of optimization methods. Section 2 introduces a simple component based

system, which we will use as a running example for the rest of the paper. In section

3 we establish objective functions and constraints for the problem in the normal

form of a Boolean Optimization Problem. Furthermore we mention the complexity

of the combinatorial problem for finding well-configured system configurations. Sec-

tion 4 addresses the search for solutions by calculating upper and lower bounds and

their usage in branching the search-tree by a Branch-and-Bound algorithm. Section

5 mentions the real-world projects in which these methods are currently evaluated

and presents the results attained so far. Finally section 6 summarizes the results

and gives some prospects to open questions and further research.

1.1 The Problem

Component Based Software Development (CBSD) is defined as the planned inte-

gration of preproduced software components (cf. [3]). The main goal is to reduce

development costs, shorten the time-to market by massive reuse and to increase

product quality by frequently utilized software artifacts.

At the same time, even today many software developers spend their time rein-

venting the proverbial wheel, although the reuse of software components in an early

development state would eliminate the necessity to redevelop similar functionality

again. However, CBSD has certain drawbacks compared to conventional software

architectures. Direct and indirect dependency relations between the components

of a system arise when software components are reused in several application at

the same time. Figure 1 clarifies this structural difference between monolithic in

contrast to component based architectures.

In conventional, monolithic software architectures, all functions required by ap-

plications A and B are implemented internally. With such a structure, a substitu-

tion of an erroneous or non-performant function F (x) is almost impossible, as all

applications of the platform have to be analyzed for their usage of that or similar

A. Stuckenholz / Electronic Notes in Theoretical Computer Science 182 (2007) 187–200188



Download English Version:

https://daneshyari.com/en/article/423512

Download Persian Version:

https://daneshyari.com/article/423512

Daneshyari.com

https://daneshyari.com/en/article/423512
https://daneshyari.com/article/423512
https://daneshyari.com

