Available online at www.sciencedirect.com

2 H Electronic Notes in
SClenceDlreCt Theoretical Computer
oS Science
ELSEVIER Electronic Notes in Theoretical Computer Science 322 (2016) 3—18

www.elsevier.com/locate/entcs

Exploiting Linearity in Sharing Analysis of
Object-oriented Programs

Gianluca Amato Maria Chiara Meo Francesca Scozzari

Dipartimento di Economia, Universita di Chieti-Pescara, Pescara, Italy

Abstract

We propose a new sharing analysis of object-oriented programs based on abstract interpretation. Two
variables share when they are bound to data structures which overlap. We show that sharing analysis can
greatly benefit from linearity analysis. We propose a combined domain including aliasing, linearity and
sharing information. We use a graph-based representation of aliasing information which naturally encodes
sharing and linearity information, and define all the necessary operators for the analysis of a Java-like
language.

Keywords: Sharing analysis, linearity, aliasing, object-oriented programming.

1 Introduction

In object-oriented languages, program variables are often bound to complex data
structures which may overlap. This is the case for Java programs, whose objects are
stored in a shared memory called heap. Discovering whether two data structures
may overlap is the scope of sharing analysis. This information is used in program
parallelization and distribution: data structures which do not overlap allow the
execution of methods on different processors, using disjoint memory. Moreover, it
is very useful for improving other kind of analysis, like shape, pointer, class and
cyclicity analysis. Sharing properties has been deeply studied for logic programs
(e.g., [10,9,12,8,5,2]) and the large literature on this topic has been the starting point
for designing our enhanced abstract domain for sharing analysis. In particular, the
use of a linearity property [7,9,12,11,3,4] has proved to be very useful when dealing
with sharing information (see [6] for a comparative evaluation). We show how the
same idea can be rephrased to enhance sharing analysis of object-oriented programs.
We propose a new combined analysis of sharing, aliasing and linearity properties for

! Email: {gamato, cmeo, fscozzari}@unich.it
2 The authors would like to thank Fausto Spoto for helpful suggestions.

http://dx.doi.org/10.1016/j.entcs.2016.03.002
1571-0661/© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http:/creativecommons.org/licenses/by/4.0/).

mailto:gamato@unich.it
mailto:cmeo@unich.it
mailto:fscozzari@unich.it
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.03.002
http://dx.doi.org/10.1016/j.entcs.2016.03.002
http://www.sciencedirect.com
http://creativecommons.org/licenses/by/4.0/

4 G. Amato et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 3-18
Vo Vi v Vi Ve
Tree Tree Tree Tree

A Gl x’z

Tree Tree Tree Tree : Tree \ Tre

I L | | T | llr

null | null null | null null | null null | nul null Q nuu

-

Tree | [Tree

null T null -[null

Tree

null | nu

Fig. 1. A concrete state with variables vg, v1,v2,v3, v4.

g

Fig. 2. Abstraction of the concrete state in Fig. 1.

Java-like programs based on abstract interpretation, inspired by the corresponding
domains on logic programs.

A concrete state in a object-oriented program is usually described by a frame,
which is a map from variables to memory locations (or null), and a memory, which
is a map from locations to objects. Our idea is to abstract concrete states into a
new kind of graphs we call ALPs graphs. For instance, given the class Tree with two
fields | and r, the state in Fig. 1 is abstracted into the ALPs graph in Fig. 2. All ALPs
graphs have at most two levels: nodes in the first level are labeled with one or more
variables, while nodes in the second level are unlabeled. First-level nodes may have
outgoing and incoming edges labeled with field names, while second-level nodes have
no outgoing edges. Note that the data structures pointed by the variables vg and vs
are abstracted in the same way, since we do not consider the whole data structure.

1.0.1 Aliasing and nullness.

ALPs graphs may encode definite nullness for variables and fields. A variable is
definitively null if it does not appear as a label in the graph, while a field vg.f is null
when there is no edge labeled with £ departing from the vy node. For example, v;.r
is definitively null according to Fig. 2.

The graph also encodes definite weak aliasing: two variables (or two fields) are
weak aliased when they point to the same location (possibly null). In the ALPs
graph, this means they are the same node. For instance, the variables vs and vy in
Fig. 1 are in the same node. Moreover, the fields v2.1 and ve.r are abstracted into
a single node.

Download English Version:

https://daneshyari.com/en/article/423555

Download Persian Version:

https://daneshyari.com/article/423555

Daneshyari.com

https://daneshyari.com/en/article/423555
https://daneshyari.com/article/423555
https://daneshyari.com

