
Incremental Rebinding
with Name Polymorphism 1

Davide Anconaa,2 Paola Gianninib,3 Elena Zuccaa,4

a DIBRIS, Università di Genova, Italy

b CS Institute, DISIT, Università del Piemonte Orientale, Alessandria, Italy

Abstract

We propose an extension with name variables of a calculus for incremental rebinding of code introduced in
previous work. Names, which can be either constants or variables, are used as interface of fragments of code
with free variables. Open code can be dynamically rebound by applying a rebinding, which is an association
from names to terms. Rebinding is incremental, since rebindings can contain free variables as well, and
can be manipulated by operators such as overriding and renaming. By using name variables, it is possible
to write terms which are parametric in their nominal interface and/or in the way it is adapted, greatly
enhancing expressivity. The type system is correspondingly extended by constrained name-polymorphic
types, where simple inequality constraints prevent conflicts among parametric name interfaces.

Keywords: open code, incremental rebinding, name polymorphism, metaprogramming

1 Introduction

Our previous work [1,2] smoothly integrates static binding of the simply-typed
lambda-calculus with a mechanism for dynamic and incremental rebinding of code.
Fragments of open code to be dynamically rebound are values. Rebinding is done
on a nominal basis, that is, free variables in open code are associated with names
which do not obey α-equivalence. Moreover, rebinding is incremental, since rebind-
ings, which are associations between names and terms, can in turn contain free
variables to be rebound. Rebindings are first class values, and can be manipulated
by operators such as overriding and renaming.

In this paper, we propose an extension of this previous work which supports,
besides name constants, name variables, making it possible to write terms which are
parametric in their nominal interface and/or the way it is adapted. For instance,

1 This work has been partially funded by “Progetto MIUR PRIN CINA Prot. 2010LHT4KM”.
2 Email: davide.ancona@unige.it
3 Email: giannini@di.unipmn.it
4 Email: elena.zucca@unige.it

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 322 (2016) 19–34

1571-0661/© 2016 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.03.003

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:davide.ancona@unige.it
mailto:giannini@di.unipmn.it
mailto:elena.zucca@unige.it
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.03.003
http://dx.doi.org/10.1016/j.entcs.2016.03.003
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

it is possible to write a term which corresponds to the selection of an arbitrary
component of a module. We summarize here below the language features.

• Unbound terms, of shape 〈x1 �→ X1, . . . , xm �→ Xm | t〉 are values representing
“open code”. That is, t may contain free occurrences of variables x1, . . . , xm to
be dynamically bound through the global nominal interface X1, . . . ,Xm. To be
used, open code should be combined with a rebinding X1 �→ t1, . . . ,Xm �→ tm.

• Rebinding application is incremental, that is, an unbound term can be par-
tially rebound, and a rebinding can be open in turn. For instance, the term
〈x �→X , y �→Y | x+y〉 can be combined with the rebinding 〈y �→Y | X �→y ,Z �→y〉,
getting 〈y �→ Y , y ′ �→ Y | y ′+y〉. This makes possible code specialization, simi-
larly to what partial application achieves for positional binding.

• Rebindings are first-class values as well, and can be manipulated by operators
such as overriding and renaming.

• A name X can be either a name constant N or a name variable α, and name
abstraction Λα.t and name application t X can be used analogously to lambda-
abstraction and application to define and instantiate name-parametric terms.

The type system in [2], supporting both open (non-exact) and closed (exact) types
for rebindings, is correspondingly extended to handle name variables. Notably, types
are extended with constrained name-polymorphic types of shape ∀α:c.T , where c is
a set of inequality constraints X �=Y among names. Such constraints are necessary
to guarantee that for each possible instantiation of α we get well-formed terms and
types. For instance, the term Λα:α �= N .〈 | N :int �→ 0, α:int �→ 1〉 is a rebinding
parametric in the name of one of its two components, which, however, must be
different from the constant name N of the other component.

In the rest of this paper, we first provide the formal definition of an untyped
version of the calculus (Section 2), followed by some examples showing its expressive
power (Section 3). We then define a typed version of the calculus (Section 4), for
which we state a soundness result. We show typing examples in Section 5, and
finally in the Conclusion we discuss related and future work.

2 Untyped calculus

The syntax and reduction rules of the untyped calculus are given in Figure 1, where
we leave unspecified constructs of primitive types such as integers, which we will
use in the examples. We assume infinite sets of variables x , name constants N
and name variables α. We use X ,Y to range over names which are either name
constants or name variables.

We use various kinds of sequences which represent finite maps: unbinding maps
u from variables to names, rebinding maps r from names to terms, renamings σ
from names to names, and substitutions s from variables to terms. We assume
that order and repetitions are immaterial in such sequences. Moreover, in a term
t which is well-formed, written � t , they actually represent maps, e.g., in X1 �→
t1, . . . ,Xm �→ tm, if Xi = Xj then ti = tj . Hence, we can use the following notations:
dom and rng for the domain and range, respectively, u1 ◦ u2 for map composition,
assuming rng(u2) ⊆ dom(u1), (u1, u2) for the union of two maps with disjoint

D. Ancona et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 19–3420

Download English Version:

https://daneshyari.com/en/article/423556

Download Persian Version:

https://daneshyari.com/article/423556

Daneshyari.com

https://daneshyari.com/en/article/423556
https://daneshyari.com/article/423556
https://daneshyari.com

