
Formal Attributes Traceability in Modular
Language Development Frameworks

Walter Cazzolaa,1 Paola Gianninib,2 Albert Shaqiria,1
a Università degli Studi di Milano, Dipartimento di Informatica

b Università del Piemonte Orientale, Computer Science Institute, Disit

Abstract

Modularization and component reuse are concepts that can speed up the design and implementation of
domain specific languages. Several modular development frameworks have been developed that rely on
attributes to share information among components. Unfortunately, modularization also fosters development
in isolation and attributes could be undefined or used inconsistently due to a lack of coordination. This work
presents 1) a type system that permits to trace attributes and statically validate the composition against
attributes lack or misuse and 2) a correct and complete type inference algorithm for this type system. The
type system and inference are based on the Neverlang development framework but it is also discussed how it
can be used with different frameworks.

Keywords: modularity and composition, modular language implementation, formal validation of the
composition, type inference

1 Introduction

Domain specific languages (DSLs) are getting more and more relevant nowadays
but their development is still difficult and this contains their proper spread. One
way to ease DSL development, consists in maximizing reuse by modularizing the
language and its implementation in the composition of loosely coupled language
components where a language component is any language-oriented concept that
should be part of the language shipped together with its implementation. According
to this trend several modular development frameworks have been developed such as
Lisa [9], JastAdd [5], Silver [11], Spoofax [7] and Neverlang [10].

The implementation of each language component provides a syntactic description
of the language concept itself and the code necessary to support the expected

� Partly funded by “Progetto MIUR PRIN CINA Prot. 2010LHT4KM”.
1 Email: {cazzola,shaqiri}@di.unimi.it
2 Email: giannini@di.unipmn.it

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 322 (2016) 119–134

1571-0661/© 2016 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.03.009

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.03.009
http://dx.doi.org/10.1016/j.entcs.2016.03.009
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


semantics for such a concept. Composition is typically driven by the syntactic
description of the language component that provides an interface to the other
language components. Even if loosely coupled the code realizing the semantic of the
different language components relies on data computed by the other components
and the sharing of these data is typically delegated to and relies on the presence
of attributes [8]. Being the composition syntax-driven, semantic constraints as
attributes presence are rarely considered at development/composition time.

Modular development eases the reuse of language components fostering their
separate development. Language components are developed in isolation and reused
as black boxes relying on naming conventions or similar expedients. This may
become unreliable when the language components can be separately compiled and
dynamically composed, as in Neverlang, since they rely on information that is not
part of component’s interface. Without some static check, the composition may turn
out in a real mess.

Apart from Spoofax [7] that provides a language transformation engine all the
other approaches exploit variants of the attribute grammars [8] and syntax direct
translation [1]. A typical (dangerous) situation consists of a language component’s
implementation that relies on an attribute that should be provided by the imple-
mentation of another component and the attribute is not defined, is defined with a
different name or is inconsistently used. In such a situation, even if the composition
could be done and the compiler generated, it will fail when it is used. Also when the
attributes are declared as in Lisa [9] or precomputed as in Silver [11] there is still no
assurance that they are consistently used.

In this work, we formalize the problem of attributes traceability over separate
language component implementations by providing a type system that statically
validates the composition with respect to the attributes. The validation is tailored
on the Neverlang framework but it can be easily adapted to other modular language
development frameworks as Lisa and Silver.

The paper is organized as follows. Section 2 introduces the problem of well-
definedness in attribute grammars, how this is contextualized to the framework
Neverlang and an overview of the proposed solution. Section 3 introduces the
formalization of Neverlang slice that is used in Section 4 to define a small-step
operational semantics that specifies how the semantic actions define, access and
modify the attributes of syntax-trees. Section 5 introduces a type system for a type
decorated version of slices which prevent runtime errors and states the soundness
result. Section 6 outlines the type inference algorithm and states that it is correct
and complete for the type system. In Sect. 7 some related work and the application
of the presented system to them is discussed. In Sect. 8 we draw some conclusions.

2 Overview

Well-definedness in attribute grammars. The problem of ensuring that a
grammar is well-defined has been addressed since the genesis of attribute grammars.
In the context of pure attribute grammars, the well-definedness is traditionally

W. Cazzola et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 119–134120



Download English Version:

https://daneshyari.com/en/article/423562

Download Persian Version:

https://daneshyari.com/article/423562

Daneshyari.com

https://daneshyari.com/en/article/423562
https://daneshyari.com/article/423562
https://daneshyari.com

