
Partial and Complete Processes
in Multiparty Sessions 1

Mario Coppo Mariangiola Dezani-Ciancaglini
Ines Margaria Maddalena Zacchi 2

Dipartimento di Informatica Università di Torino, corso Svizzera 185, 10149 Torino, Italy

Abstract

Multiparty sessions describe the interactions among multiple agents in a distributed environment and require
essentially two steps: the specification of the communication protocols and the implementation of such
protocols as processes. Multiparty session types address this methodology: global and session types provide
the communication protocols, whereas the processes describe the behaviour of the peers involved in the
sessions. Because of the close relationships between types and processes, some information, such as the
names of senders and receivers, are replicated both in types and in processes.
In multiparty conversations it is quite natural that participants with essentially the same role are imple-
mented by processes that follow the same pattern, differing only in the senders and receivers of commu-
nication actions. In order to allow for a lighter and less rigid development of processes, we propose a
translation tool which allows one to write processes in a simplified syntax, called partial syntax, where the
names of senders/receivers for input/output operations are omitted. By adding the missing information,
partial processes can be automatically translated in complete processes, for which an operational semantics
is defined. The partial syntax, in particular, allows one to use the same process template to implement
similar participants.
In this paper we present a translation and type checking algorithm from partial to complete processes,
which, if successful, also assures that the target processes are well typed. The algorithm is synthesised from
a rule-based description of the translation in natural semantics and it is proved sound and complete with
respect to the translation rules.

Keywords: π-calculus, session types, multiparty sessions.

1 Introduction

Session types are one of the most successful formalisms introduced to describe com-

municating processes and to study their behaviour. The basic idea, appeared first

in [11] and [6], is to introduce a new form of polymorphism which permits the typing

of channel names by structured sequences of types, abstractly representing the trace

1 This work was partially supported by ICT COST Action IC1201 BETTY, MIUR PRIN Project CINA
Prot. 2010LHT4KM and Torino University/Compagnia San Paolo Project SALT.
2 Email: {coppo,dezani,ines,zacchi}@di.unito.it

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 322 (2016) 135–151

1571-0661/© 2016 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.03.010

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:zacchi@di.unito.it
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.03.010
http://dx.doi.org/10.1016/j.entcs.2016.03.010
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


of the usage of the channels. In modelling distributed systems, where processes in-

teract by means of message passing, it is appropriate to allow many interactions to

occur within the scope of private channels following disciplined protocols. As usual,

we call sessions such private interactions and session types the protocols describing

them. In its simplest form, a session is established between two peers, such as a

client connecting with a server. In general, a session may involve any (usually fixed)

number of peers. In these cases, we speak of multiparty sessions and of multiparty

session types [7] for their protocol descriptions. A multiparty session type theory

consists of three parts: global types, processes, and local types, called also session

types. Global types describe communication protocols in terms of the interactions

between peers, of the order of these interactions, and of the kind of exchanged

messages. The description given by a global type is neutral, independent from the

peers and their viewpoints. Processes describe, by means of a formal language, the

behaviour of the peers involved in the session. For each peer a session type describes

the same communication protocol as the global type, but from the viewpoint of the

peer. Local and global types are related by a projection operation that extracts

local types from the global ones, and a type system makes sure that a process

uses the communication channels it owns according to their local types. Among

the more interesting features of interactions between peers, session delegation is a

key operation, which permits to rely on other parties for completing specific tasks

transparently, in a type safe manner. A typical scenario is given by the protocol

of Remote Procedure Call for server/client distributed systems. In such a case the

server, after receiving a request from a client, delegates remaining interactions with

the client to an application process. The client and the application process are ini-

tially unknown to each other, but later communicate directly, transparently to the

client, through dynamic mobility of the communication channel. Such protocol is

usually synchronous, because the processes involved in the communications remain

tightly coupled.

Regarding the syntax of processes, the need to specify sender and receivers for

each input/output operation makes cumbersome the code writing; moreover, in

distributed applications often many processes perform exactly the same pattern of

input/output operations, differing only for the involved participants. For example

in the Remote Procedure Call protocol, the application processes, that provide the

services, in many interesting cases differ only in the process names involved in the

communications. In this paper we present a translation algorithm that allows one

to code processes in a simplified syntax, called partial syntax, which does not require

to specify the names of senders/receivers for input/output operations. Partial code

is simpler to write and can be shared by different participants in a conversation,

but it is incomplete and cannot be directly executed. The executable code of the

processes, written in complete syntax (i.e. including the names of the processes

involved in the communications) can be obtained automatically from the partial

code by exploiting the information given by the global types. The translation is

successful only if the target process is well typed according to standard typing rules

for multiparty sessions, so the translation algorithm also includes type checking.

M. Coppo et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 135–151136



Download English Version:

https://daneshyari.com/en/article/423563

Download Persian Version:

https://daneshyari.com/article/423563

Daneshyari.com

https://daneshyari.com/en/article/423563
https://daneshyari.com/article/423563
https://daneshyari.com

