
A Class of
Reversible Primitive Recursive Functions

Luca Paolinia,1,2, Mauro Piccoloa,1,2 and Luca Roversia,1,2

a Dipartimento di Informatica, Università degli Studi di Torino, Corso Svizzera 185, 10149 Torino

Abstract

Reversible computing is bi-deterministic which means that its execution is both forward and backward
deterministic, i.e. next/previous computational step is uniquely determined. Various approaches exist to
catch its extensional or intensional aspects and properties. We present a class RPRF of reversible functions
which holds at bay intensional aspects and emphasizes the extensional side of the reversible computation
by following the style of Dedekind-Robinson Primitive Recursive Functions. The class RPRF is closed by
inversion, can only express bijections on integers — not only natural numbers —, and it is expressive enough
to simulate Primitive Recursive Functions, of course, in an effective way.

Keywords: Reversible computing, Recursive permutations, Primitive Recursive Functions.

1 Introduction

Reversible computing (sometimes called isentropic or adiabatic computing) is, on its
own, an unconventional form of computing. Origins of reversible computing trace
back to the study of entropy in physical systems [16]. The goal was relating thermo-
dynamic properties of the system with the amount of information that it could carry
around. In the sixties, Landauer was the first to define a technique for transforming
irreversible computations into equivalent reversible ones [9]. Landauer thought his
machines could not reversibly get rid of their undo trails. Lecerf first described a
technique to uncompute histories [10], but he was unaware of the thermodynamic
applications. Bennett [2] rediscovered Lecerf reversal. “Bennett’s trick” corresponds
to copying the output before uncomputing the undo trail, thereby showing for the
first time reversible computations that could avoid entropy generation. The moral
of these studies tells us that, if a physical system performs a logically irreversible

1 Partially supported by the LINTEL project.
2 Email: luca.paolini@unito.it, mauro.piccolo@unito.it,luca.roversi@unito.it

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 322 (2016) 227–242

1571-0661/© 2016 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.03.016

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.03.016
http://dx.doi.org/10.1016/j.entcs.2016.03.016
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


operation then it must increase the entropy of the environment [19]. When a com-
putational system erases a bit of information, it must dissipate ln 2 × kT energy,
where k is Boltzmann’s constant and T is the temperature. For T = 300 Kelvins
(room temperature), this is about 2.9×10−21 Joules (roughly, the kinetic energy of a
single air molecule at room temperature). Today’s computers erase a bit of informa-
tion (in the above sense) every time they perform a logic operation, so their hunger
for energy is ever-increasing. Reversible computing can avoid to use irreversible
operations and entropy increasing.

Here above we have recalled the Physics related aspects that make reversible
computation relevant. From a Computer Science foundational point of view re-
versible computing is interesting because it subsumes classical computing: every
computation in a classical model can be simulated by a reversible one [14]. Moreover,
aspects of reversible computation are ubiquitous in everyday classical computations.
We can find them in activities spanning from software verification to programming
languages, passing through computer architectures, as well as part of innovative
computing models, like quantum, bio, chemical and molecular ones.

Reversible Turing-machines. Foundational studies on the notion of “re-
versible computation” exist. They have been chiefly devoted to frame the thermo-
dynamic relations between entropy and computation via Turing-machines [1,2,6].
A reversible Turing-machine is both deterministic (like a classical Turing-machine)
and backward-deterministic, i.e. it is bi-directionally deterministic. The backward
determinism allows to easily reverse the computation, viz. we can undo a reversible
program step by step eventually re-establishing former situations [1]. Only recently,
recursion-theoretic arguments have been surveyed with some degree of systematiza-
tion in [1].

This work develops a starting proposal to a recursion theory of reversible functions,
in the line of Dedekind-Robinson-Kleene.

Dedekind-Robinson-Kleene Functions. We start recalling the distinguishing
aspects of Kleene’s Partial Recursive Functions [7], that we simply call Partial Re-
cursive Functions, abbreviated as (RF). These functions form an extension of the
Dedekind-Robinson Primitive Recursive Functions (PRF) this paper starts from.

Our starting point are RF and PRF for various reasons. First, we want to manage
entities that compose because they stand for and are written as functions. Second,
RF, as well as PRF, balance intensional and extensional aspects. Intensionally, they
can be taken as programming languages whose semantics is given informally. Exten-
sionally, RF deals with partial functions 3 while PRF with total ones, both shifting
the focus on functions closer to what other computational models can express and
providing support to functional, or compositional, programming.

3 A relation between two sets A,B is a subset of the cartesian product A×B. A relation is functional when
(a, b), (a, b′) ∈ A× B implies b = b′. A relation is co-functional when (a, b), (a′, b) ∈ A× B implies a = a′.
A relation is total whenever a ∈ A implies that b ∈ B exists such that (a, b) ∈ A×B. A relation is co-total
whenever b ∈ B implies that a ∈ A exists such that (a, b) ∈ A×B. A function is a total functional relation.
A partial function is a functional relation. A function is injective whenever its graph is a co-functional
relation. A function is surjective whenever its graph is a co-total relation.

L. Paolini et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 227–242228



Download English Version:

https://daneshyari.com/en/article/423569

Download Persian Version:

https://daneshyari.com/article/423569

Daneshyari.com

https://daneshyari.com/en/article/423569
https://daneshyari.com/article/423569
https://daneshyari.com

