
Evolution of a Model-driven Process
Framework

Wilson Pádua1,2

Computer Science Department
Federal University of Minas Gerais

Belo Horizonte, MG, Brazil

Abstract

We discuss the evolution of Praxis, a model-driven process framework, building on feedback from educational
and professional applications, along the past fifteen years. We follow the evolution from Praxis first version
to the current one, discussing what was introduced in each. For past and current versions, we classify model
improvements, discussing their nature and rationale, derived from received feedback.

Keywords: process, model-driven development, model transformations, CRUD transactions, framework,
reuse, persistent data.

1 Introduction

According to the CMMI [10], a defined software development process has a main-

tained process description, and contributes process related experiences to the orga-

nizational process assets. By process framework we define a set of artifacts which

includes process descriptions and other important kinds of assets, such as reusable

libraries and guidance resources.

Such framework is defined as model-driven when models are its core artifacts,

from which others are partially or completely derived. In this work, we describe

how a model-driven framework evolved along fifteen years, through improvements

suggested by feedback from both educational and professional applications.

The process framework whose evolution is discussed here is Praxis, whose pri-

mary purpose is to support software engineering course projects. As such, it has

been used in the last fifteen years to support teaching in software engineering

courses.

1 We thank IBM Rational for supporting this work, within the IBM Academic Initiative.
2 Email: wppf@ieee.org

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 321 (2016) 41–65

1571-0661/© 2016 The Author. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.02.004

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:wppf@ieee.org
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.02.004
http://dx.doi.org/10.1016/j.entcs.2016.02.004
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


Moreover, Praxis has been systematically applied and evaluated by the author

himself, in industry-oriented, graduate software courses. The results of this kind of

application have been discussed elsewhere ([30], [31], [32], [33]). As shown there in

more detail, the students in such courses were required to develop small applications

using the complete process. Typical courses comprised four software engineering

disciplines, with about 30 hours each, and typical student project had a size of

about 100 to 150 function points.

Praxis-Synergia, a derived process tailored to real-life projects, has been applied

in the development of applications in the range of hundreds to thousands of func-

tion points. This application is performed by Synergia, a university-based software

engineering laboratory which develops real-life applications under contract, mostly

for government organizations ([35], [5]).

The Praxis process has evolved along those years, mostly through feedback from

both course and Synergia projects. This paper describes which changes were intro-

duced during those years, as feedback from process use was collected and analyzed.

In section 2, we discuss the goals of process and modeling improvements, propos-

ing a classification for them. In section 3, we present the evolution of a model-driven

development process, oriented to support course projects, showing the improvements

performed in each version, how such improvements were suggested by feedback from

its application, and which kinds of change they caused. In section 4, we discuss cur-

rent work. Conclusions are drawn in section 5.

2 Process Improvements

2.1 Improvement goals

A major process improvement goal is to make it more effective, that is, help

projects to accomplish their mission within specified constraints. For real-life

projects, this usually means delivering a product with a satisfactory quality level,

meeting the product requirements in a provable way. However, even a fully ef-

fective process will not allow competitive development if it is not also efficient,

accomplishing such mission within its market budget and schedule constraints. In

the evolution of processes, feedback from process application leads to actions to

improve both the process effectiveness and efficiency

For educational processes, effectiveness also means exercising the knowledge and

skills that their application in course projects intends to impart. Efficiency also

means keeping those projects within course budgets for time and effort.

2.2 Process artifacts

A software development process aims to produce executable code, such as ap-

plication code and test scripts, together with their environmental data, such as

database schemata, test data, configuration files, localized text, graphics and other

resource files.

A number of other artifacts help delivering such code and data. Some may be

W. Pádua / Electronic Notes in Theoretical Computer Science 321 (2016) 41–6542



Download English Version:

https://daneshyari.com/en/article/423590

Download Persian Version:

https://daneshyari.com/article/423590

Daneshyari.com

https://daneshyari.com/en/article/423590
https://daneshyari.com/article/423590
https://daneshyari.com

