Available online at www.sciencedirect.com

2 H Electronic Notes in
SClenceDlreCt Theoretical Computer
e T ! S Science
ELSEVIER Electronic Notes in Theoretical Computer Science 321 (2016) 6788

www.elsevier.com/locate/entcs

A Model to Guide Dynamic Adaptation
Planning in Self-Adaptive Systems

Andrés Paz 23

Université du Québec, Ecole de Technologie Supérieure, Montréal, Canada

Hugo Arboleda '*

Universidad Icesi, I2T Research Group, Cali, Colombia

Abstract

Self-adaptive enterprise applications have the ability to continuously reconfigure themselves according to
changes in their execution contexts or user requirements. The infrastructure managing such systems is
based on IBM’s MAPE-K reference model: a Monitor and an Analyzer to sense and interpret context data,
a Planner and an Fzecutor to create and apply structural adaptation plans, and a Knowledge manager to
share relevant information. In this paper we present a formal model, built on the principles of constraint
satisfaction, to address dynamic adaptation planning for self-adaptive enterprise applications. We formalize,
modify and extend the approach presented in [1] for working with self-adaptation infrastructures in order
to provide automated reasoning on the dynamic creation of structural adaptation plans. We use a running
example to demonstrate the applicability of such model, even in situations where complex interactions arise
between context elements and the target self-adaptive enterprise application.

Keywords: Self-Adaptive Enterprise Applications, Dynamic Adaptation Planning, Automated Reasoning.

1 Introduction

Currently many Enterprise Applications (EAs) live in dynamic execution contexts,
interacting with other systems, and under the influence of stimuli from sources
inside or outside the system scope. This may affect their behavior or the levels at
which they satisfy agreed quality; however, regardless of these impacts, they still
have to fulfill their service quality agreements. On the one hand, the fulfillment
of quality agreements is completely and utterly dependent on system architectures,

L This work has been partially supported by grant 0369-2013 from the Colombian Administrative Depart-
ment of Science, Technology and Innovation (Colciencias) under project SHIFT 2117-569-33721.

2 We thank Miguel Jiménez and Gabriel Tamura for their contributions on the project and the architecture
of the SHIFT framework.

3 Email: afpaz@icesi.edu.co
4 Email: hfarboleda@icesi.edu.co

http://dx.doi.org/10.1016/j.entcs.2016.02.005
1571-0661/© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


mailto:afpaz@icesi.edu.co
mailto:hfarboleda@icesi.edu.co
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.02.005
http://dx.doi.org/10.1016/j.entcs.2016.02.005
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

68 A. Paz, H. Arboleda / Electronic Notes in Theoretical Computer Science 321 (2016) 67-88

which comprises software architecture, hardware and network infrastructure. On
the other hand, in response to ever increasing needs for strengthened responsiveness
and resiliency, quality agreements may evolve to reflect this business reality.

Autonomic computing deals with the management of independent components
capable of handling both external resources and their internal behavior, which are
constantly interacting in accordance with high-level policies. Its required infrastruc-
ture usually integrates an autonomic manager, an implementation of the generic con-
trol feedback loop from control theory, and managed components. Most autonomic
managers are based on the MAPE-K reference model [2], allowing software systems
to be adapted to context changes in order to ensure the satisfaction of agreed Service
Level Agreements (SLAs). Five elements make up the reference model: Monitor,
Analyzer, Planner, Executor and Knowledge Manager. The Monitor continuously
senses context conditions and the Analyzer interprets and compares the sensed data
with SLAs, the Planner synthesizes and creates adaptation plans when required,
and the Ezecutor alters the system’s behavior by modifying its structure in accor-
dance with a given adaptation plan. All of them share information through the
Knowledge Manager element.

In this paper we present a formal model, built on the principles of constraint
satisfaction, to address the task of the Planner element, i.e. dynamic adaptation
planning for self-adaptive enterprise applications. Our work in this paper is focused
around changing quality agreements while EAs are already operational. This task,
however, has a direct impact on system architecture. We consider in this work only
the relationships of such quality agreements with software architecture in order to
plan the necessary structural adaptations to meet the new quality specifications.
We use a running example to demonstrate the applicability of such model, even in
situations where complex interactions arise between context elements and the target
self-adaptive enterprise application. In the context of product line engineering,
decision and resolution models have been used for planning the composition of core
assets according to variable configurations that include user requirements, e.g., [3,4].
All of such approaches, however, deal with problems related to product configuration
without taking into account the problem of planning dynamic adaptation of systems.

Some authors have explored different trends for generating reconfiguration plans.
For instance [5,6] use artificial intelligence based on hierarchical task networks and
situation calculus, respectively, to plan new web service compositions in an attempt
to overcome faults. [7] calculates fuzzy values of quality of service (QoS) levels for
available service variants and selects the variants with the nearest QoS levels that
fit the context and user requeriements. There are other approaches that implement
dynamic adaptation of service compositions, e.g., [8,9,10]; however, they neither
provide implementation details nor formal specifications of any formal model for
planning activities.

In previous work [1], we presented an approach based on constraint satisfaction
for product derivation planning in model-driven software product lines. There, we
modeled the problem of planning the transformation workflow to derive products as
a constraint satisfaction problem. In this paper, we base on such model and we fur-



Download English Version:

https://daneshyari.com/en/article/423591

Download Persian Version:

https://daneshyari.com/article/423591

Daneshyari.com


https://daneshyari.com/en/article/423591
https://daneshyari.com/article/423591
https://daneshyari.com

