
Token-passing Nets for Functional Languages

José Bacelar Almeida, Jorge Sousa Pinto, Miguel Vilaça 1

CCTC / Departamento de Informática
Universidade do Minho

4710-057 Braga, Portugal

Abstract

Token-passing nets were proposed by Sinot as a simple mechanism for encoding evaluation strategies for the
λ-calculus in interaction nets. This work extends token-passing nets to cover a typed functional language
equipped with structured types and unrestricted recursion. The resulting interaction system is derived
systematically from the chosen big-step operational semantics. Along the way, we actually characterize and
discuss several design decisions of token-passing nets and extend them in order to achieve simpler interaction
net systems with a higher degree of embedded parallelism.

Keywords: Interaction nets, reduction strategies, λ-calculus, recursion.

1 Introduction

Interaction nets [7] constitute a Turing-complete computational paradigm, where
computation is purely local, and thus (strong) confluence holds.

The linear λ-calculus can be very naturally encoded in interaction nets with
just two symbols. When one drops the linearity restriction however, things become
more subtle: since variable substitution is implemented within the formalism, and
not as an external meta-operation, copying and erasure of terms must be dealt with
explicitly. Many encodings have been studied (e.g. [9,10,8]), some of which allow
for a great degree of sharing of computations.

Token-passing nets [11] were proposed as a simple mechanism for encoding the
most common evaluation strategies for the λ-calculus in the interaction net frame-
work. One of the most attractive features is their simplicity, allowing computations
to be easily traced in the term syntax. This makes them particularly well-suited for
debugging or educational purposes.

The purpose of this paper is two-fold:

1 Emails: {jba,jsp,jmvilaca}@di.uminho.pt. The work of the 3rd. author was funded by FCT grant
SFRH / BD / 18874 / 2004.

Electronic Notes in Theoretical Computer Science 204 (2008) 181–198

1571-0661 © 2008 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.03.061
Open access under CC BY-NC-ND license.

mailto:jba@di.uminho.pt
mailto:jsp@di.uminho.pt
mailto:jmvilaca@di.uminho.pt
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

(i) To explicitly characterize token-passing nets as a class of interaction nets;

(ii) to extend the token-passing encoding of the λ-calculus to a typed functional
language with structured types. In particular, we propose a novel way of
encoding arbitrary recursion with a fixpoint construct.

Sinot imposes a linearity restriction on the evaluation token, which forces evaluation
to proceed sequentially. A novelty of our approach to token-passing is that sequen-
tiality is not taken to be a defining attribute, since we believe that relaxing the
sequentiality constraint gives rise to more natural (and considerably simpler) en-
codings for the strategies considered. This allows us to encode parallel call-by-value
for our functional language.

For the sake of generality, we use the framework of Combinatory Reduction
Systems to specify the syntax of our terms with binding, and we give a generic
encoding of CRS terms into a class of syntactical nets. CRS syntax gives us a
generic way of combining first-order term rewriting with λ-style bindings, which is
very appropriate for our development in this paper.

The paper is structured as follows: Section 2 reviews basic notions of interac-
tion nets and encodings of the λ-calculus, including the token-passing encoding.
Section 3 introduces a notion of nets capable of representing the syntax of a large
class of term languages with binding. Section 4 is devoted to the characterization
of a general class of token-passing nets and systems, and to the description of the
token-passing system for the λ-calculus. We proceed to give in Section 5 an encod-
ing of a functional language with recursion. Section 6 concludes with some remarks,
extensions, and pointers to further work.

2 Interaction Nets and λ-Calculus Encodings

An interaction net system [7] is specified by giving a set Σ of symbols, and a set
R of interaction rules. Each symbol α ∈ Σ has an associated (fixed) arity. An
occurrence of a symbol α ∈ Σ will be called an agent. If the arity of α is n, then the
symbol has n+1 ports: a distinguished one called the principal port, and n auxiliary
ports labelled x1, . . . , xn. A net built on Σ is a graph (not necessarily connected)
where the nodes are agents. The edges between nodes of the graph are connected
to ports in the agents, such that there is at most one edge connected to every port
in the net. Edges may be connected to two ports of the same agent. Principal ports
of agents are depicted by an arrow. The ports where there is no edge connected are
called the free ports of the net. The set of free ports define the interface of the net.

There are two special instances of a net: a wiring (a net containing no agents,
only edges between free ports), and the empty net (containing no agents and no
edges). The dynamics of Interaction Nets are based on the notion of active pair :
any pair of agents (α, β) in a net, with an edge connecting together their principal
ports. An interaction rule ((α, β) → N) ∈ R replaces an occurrence of the active
pair (α, β) by the net N . Rules must satisfy two conditions: the interfaces of the
left-hand side and right-hand side are equal (this implies that the free ports are
preserved during reduction), and there is at most one rule for each pair of symbols,

J.B. Almeida et al. / Electronic Notes in Theoretical Computer Science 204 (2008) 181–198182

Download English Version:

https://daneshyari.com/en/article/423643

Download Persian Version:

https://daneshyari.com/article/423643

Daneshyari.com

https://daneshyari.com/en/article/423643
https://daneshyari.com/article/423643
https://daneshyari.com

