
Abstract Semantics for Alias Analysis in K

Irina Măriuca Asăvoae3

Computer Science Faculty
University Alexandru Ioan Cuza

Iaşi, Romania

Abstract

This paper presents an approach to integrating analysis and verification methods in the K framework. We
adopt the abstract interpretation perspective where the concrete system to be analyzed/verified is mapped
into a suitable abstract system, and collecting semantics is applied over the abstract system to obtain
the analysis/verification method itself. As such, we present the K perspective of collecting semantics over
K operational semantics for abstract systems. For a good degree of generality we consider that abstract
systems are K specifications of (finite) pushdown systems. We give the collecting semantics as a generic set
of K rules parametrized by the K specification of a finite pushdown system. Further, we describe a case
study which instances collecting semantics with alias analysis. For this, the abstract system is defined as an
imperative language which maintains enough pointer and flow information for alias analysis to be decidable.
The K specification of this imperative language fits the frame of a finite pushdown system specification.

Keywords: abstraction, collecting semantics, pushdown systems, alias analysis

1 Introduction

The spark of the K framework [14] is the observation that computation is expressed

naturally with rewriting. The source of inspiration for K is the Rewriting Logic

Semantics project [9,19,10] which has the declared purpose of unifying algebraic

denotational semantics and operational semantics. This unification is achieved by

considering the two semantics as different views over the same object. Namely,

denotational semantics views the rewriting logic specification of a language as a

designated model, while operational semantics focuses on the execution of the same

specification.

K is built upon a continuation-based technique and a series of notational con-

ventions to allow for more compact and modular programming language definitions.

K definitions can be mechanically translated into rewriting logic, and in particular

1 Contract ANCS POS CCE, O2.1.2, ID nr. 602/12516, ctr.nr 161/15.06.2010, DAK.
2 European Social Fund in Romania, under the responsibility of the Managing Authority for the Sectoral
Operational Programme for Human Resources Development 2007-2013 [grant POSDRU/88/1.5/S/47646]
3 Email: mariuca.asavoae@info.uaic.ro

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 304 (2014) 97–110

1571-0661/© 2014 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2014.05.005

mailto:mariuca.asavoae@info.uaic.ro
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2014.05.005
http://dx.doi.org/10.1016/j.entcs.2014.05.005
http://www.sciencedirect.com


into Maude, to obtain program analysis tools or interpreters based on term rewrit-

ing. This capability makes K an executable framework, with K-Maude its prototype

implementation [15,18].

A K definition is an executable specification of a transition system whose com-

putations are obtained by the execution of the K definition. Moreover, one can also

reuse aK definition to enable richer executions as, for example, sets of computations.

When producing the plain computations, K can be seen as an interpreter while,

when producing sets of computations, K can also be used as an analyzer/verifier for

the specified transition system. This is the idea of the current paper in a nutshell

and we frame it under the methodology proposed by abstract interpretation.

In abstract interpretation, a particular analysis/verification method is achieved

by defining collecting semantics over the examined transition system [4,5]. Namely,

the transition system is first transformed into a simpler “abstract” one such that

the operational semantics of the two systems “agree” on the analyzed/verified set

of properties. Then, collecting semantics relies on the operational semantics of the

abstract transition system and collects its computations via a forward or backward

fixpoint iteration. Hence, the analysis/verification methods are a semantic reflection

of the operational semantics.

1.1 Contributions summary

In this paper we present an infrastructure for expressing in K the reflection of

operational semantics into collecting semantics, and the alias analysis instantiation

of this reflection. The cornerstone of this infrastructure is the choice of pushdown

systems as suitable K definitions. The semantics reflection is nicely captured in K

by the configuration abstraction mechanism and definitional modularity. The choice

of pushdown systems as focal point for this study is justified by the generality of the

notion, the already available theoretical results, and the close resemblance with K

definitions. By the latter similitude we mean that the continuation-based technique

used in K gives the stack aspect to the k-cell, while K rules usually rely on a pushed

down stack mechanism.

In Section 2 we present an infrastructure for the K specification of analy-

sis/verification methods for pushdown systems. In more detail, in Section 2.1 we

present a discussion on the K representation of pushdown systems. We use the K

specification of a pushdown system as support for deriving the analysis/verification

infrastructure in Section 2.2. We also argue the opportunity to consider pushdown

systems and their K specification in Section 2.3.

In Section 3 we present a case study of an abstract imperative programming

language with procedures and objects, SIL̇K , via its K specification. SIL̇K is of

interest in the context of the K framework for the following reasons:

• This is a research language introduced in [17,16] with several bisimilar semantics.

In Section 3.1 we present the K specification of one of these semantics. In partic-

ular, this semantics exhibits algorithmic details which emphasize the versatility

of K in the area of algorithm formulation.

I.M. Asăvoae / Electronic Notes in Theoretical Computer Science 304 (2014) 97–11098



Download	English	Version:

https://daneshyari.com/en/article/423687

Download	Persian	Version:

https://daneshyari.com/article/423687

Daneshyari.com

https://daneshyari.com/en/article/423687
https://daneshyari.com/article/423687
https://daneshyari.com/

