
A Revisionist History of
Concurrent Separation Logic

Stephen Brookes

Department of Computer Science
Carnegie Mellon University

Pittsburgh, USA

Abstract

Concurrent Separation Logic is a resource-sensitive logic for fault-free partial correctness of concurrent pro-
grams with shared mutable state, combining separation logic with Owicki-Gries inference rules, in a manner
proposed by Peter O’Hearn. The Owicki-Gries rules and O’Hearn’s original logic lacked compositionality,
being limited to programs with a rigid parallel structure, because of a crucial constraint that “no other
process modifies” certain variables, imposed as a side condition in the inference rule for conditional criti-
cal regions. In prior work we proposed a more general formulation of a concurrent separation logic using
resource contexts, and we offered a soundness proof based on a trace semantics. Recently Ian Wehrman
and Josh Berdine discovered an example showing that this soundness proof relies on a hidden assumption,
tantamount to “no concurrent modification”, so that the proposed logic also suffices only for rigid programs.
Here we show that, with a natural and simple adjustment we can avoid this problem. The key idea is to
augment each assertion with a “rely set” of variables, assumed to be unmodified by other processes, and
adjust the inference rules to validate and take advantage of these assumptions. This revised concurrent
separation logic is compositional, allowing rigid and non-rigid programs, and the extra constraints imposed
by rely set requirements ensure soundness. At the same time, we relax the Owicki-Gries constraints on
the use of critical variables, allowing variables to be protected by multiple resources and building into the
logic a simpler, yet more general, protection discipline. In the revised logic, a process wanting to write to a
shared variable must acquire all resources that protect it, while a process wishing to read a shared variable
need only acquire one such resource. This generalization brings concurrent separation logic closer in spirit
to permission-based logics, in which processes may be allowed to perform concurrent reads.

Keywords: concurrency, shared memory, denotational semantics, resources, separation logic

1 Introduction

Concurrent Separation Logic (CSL) is a resource-sensitive logic for reasoning about

fault-free partial correctness of shared-memory concurrent programs. CSL com-

bines separation logic, originally introduced in [10] by John Reynolds for reasoning

about sequential pointer programs, with Owicki-Gries rules for pointer-free shared-

memory programs [7], in a manner proposed by Peter O’Hearn [6]. The Owicki-

Gries and O’Hearn logics lack compositionality, being limited to programs with rigid

parallel structure, because of a static constraint that “no other process modifies”

certain variables, imposed as a side condition in the rule for conditional critical

regions.

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 276 (2011) 5–28

1571-0661 © 2011 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2011.09.013
Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2011.09.013
http://dx.doi.org/10.1016/j.entcs.2011.09.013
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/

In prior work we formulated a more general concurrent separation logic [3] using

resource contexts in an attempt to avoid these limitations, and we gave a soundness

proof, using on a trace-based denotational semantics. A major feature in this devel-

opment was a semantic formalization of O’Hearn’s notion of “ownership transfer”

based on resource invariants, and O’Hearn’s principle that processes “mind their

own business” [6]. Recently Ian Wehrman and Josh Berdine found a counterexam-

ple [12] showing that this soundness proof makes a hidden assumption, tantamount

to “no other process modifies”, leading to the realization that the soundness analysis

of [3] only suffices for rigid programs.

We show here that, with a systematic natural adjustment to the prior formula-

tion, we can develop a fully compositional concurrent separation logic that avoids

this problem. The key idea is to augment the assertions of CSL with a “rely set”,

representing a set of variables assumed to be left unmodified by the “environment”.

By making this set an integral part of assertions, we avoid the need for a non-

compositional side condition; we are able to properly account for the assumptions

and guarantees that a process makes about modifications to shared variables, in a

purely syntax-directed manner.

At the same time, we relax the Owicki-Gries constraints on the use of critical

variables, allowing variables to be protected by multiple resources and building into

the logic a simpler, more general, protection discipline. This brings concurrent

separation logic closer in spirit to permission-based logics, in which processes may

be allowed to perform concurrent reads [1,2].

Again using action trace semantics, we sketch a soundness proof for the revised

logic, this time without the hidden assumption and without requiring rigid program

structure. We offer a series of examples, addressing Wehrman’s problem, and show-

ing that the augmented logic can deal with a wider variety of programs than the

original, because of our relaxation of the Owicki-Gries constraints. We intend the

revised and augmented logic presented here to replace the original.

We assume familiarity with separation logic, as defined by Reynolds [10].

2 Syntax

The syntax of our programming language (as in [3]) is given by the following abstract

grammar, in which c ranges over the set Com of commands.

c ::= skip | i:=e | i:=[e] | [e]:=e′ | i:=consE | dispose e
| c1; c2 | if b then c1 else c2 | while b do c

| with r when b do c | c1‖c2

Let e, b range over integer expressions and boolean expressions, respectively, and E

range over list expressions of form [e1, . . . , en]. Expressions are pure, i.e. indepen-

dent of the heap.

We distinguish syntactically between identifiers (i ∈ Ide) denoting integer vari-

S. Brookes / Electronic Notes in Theoretical Computer Science 276 (2011) 5–286

Download	English	Version:

https://daneshyari.com/en/article/423884

Download	Persian	Version:

https://daneshyari.com/article/423884

Daneshyari.com

https://daneshyari.com/en/article/423884
https://daneshyari.com/article/423884
https://daneshyari.com/

