
Capsules and Closures

Jean-Baptiste Jeannin1

Department of Computer Science
Cornell University

Ithaca, New York 14853-7501, USA

Abstract

Capsules are a clean representation of the state of a computation in higher-order programming languages
with effects. Their intent is to simplify and replace the notion of closure. They naturally provide support
for functional and imperative features, including recursion and mutable bindings, and ensure lexical scoping
without the use of closures, heaps, stacks or combinators. We present a comparison of the use of closures
and capsules in the semantics of higher-order programming languages with effects. In proving soundness of
one to the other, we give a precise account of how capsule environments and closure environments relate to
each other.

Keywords: Capsule, Closure, Functional Programming, Imperative Programming, State of Computation,
Higher-Order Functions, Mutable Variables, Scoping, Programming Language Semantics.

1 Introduction

This paper compares Capsules and Closures. Capsules are a representation of the

state of a computation for higher-order functional and imperative languages with

effects, and were introduced in [1]. Many authors have studied the state of a com-

putation, for example [2–14]. However, capsules are intended to be as simple as

possible, and they correctly capture lexical scoping and handle variable assignment

and recursion without any combinators, stacks or heaps, and while keeping every-

thing typable with simple types.

Closures were first introduced by Peter J. Landin along with the SECDmachine [13],

and first implemented in the programming language Scheme [15]. The early ver-

sions of Lisp implemented dynamic scoping, which did not follow the semantics of

the λ-calculus based on β-reduction. By keeping with each λ-abstraction the envi-

ronment in which it was declared, thus forming a closure, closures were successful

at implementing static scoping efficiently.

1 Email: jeannin@cs.cornell.edu

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 276 (2011) 191–213

1571-0661 © 2011 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2011.09.022
Open access under CC BY-NC-ND license. 

mailto:jeannin@cs.cornell.edu
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2011.09.022
http://dx.doi.org/10.1016/j.entcs.2011.09.022
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/


In [1], capsules are shown to be essentially finite coalgebraic representations of

regular closed λ-coterms. Because of recursion and therefore of possible cycles in

the environment, the state of computation should be able to represent all finite λ-

terms and a subset of the infinite λ-terms, also called λ-coterms. Capsules represent

all the regular λ-coterms, and that is enough to model every computation in the

language. λ-coterms allow to represent recursive functions directly, without the

need for the Y-combinator or recursive types.

The language we introduce is both functional and imperative: it has higher-order

functions, but every variable is mutable. This leads to interesting interactions and

allows to go further than just enforcing lexical scoping. In particular, what do we

expect the result of an expression like (let x = 1 in let f = λy.x in x := 2; f 0) to be?

Scheme (using set! for :=) and OCaml (using references) answer 2. Capsules give a

rigorous mathematical definition that agrees and conservatively extends the scoping

rules of the λ-calculus. Our semantics of closures also agrees with this definition,

but this requires introducing a level of indirection, with both an environment and

a store, à la ML. Finally, recursive definitions are often implemented using some

sort of backpatching; this construction is known as “Landin’s knot”. We build this

directly into the definition of the language by defining let rec x = d in e as a syntactic

sugar for let x = a in x := d; e, where a is any expression of the appropriate type.

There is much previous work on reasoning about references and local state; see [16–

19]. State is typically modeled by some form of heap from which storage locations

can be allocated and deallocated [9–12]. Others have used game semantics to reason

about local state [20–22]. Mason and Talcott [2–4] and Felleisen and Hieb [5] present

a semantics based on a heap and storage locations. A key difference is that Felleisen

and Hieb’s semantics is based on continuations. Finally, Moggi [8] proposed monads,

which can be used to model state and are implemented in Haskell.

This paper is organized as follows. In section 2, we formally introduce a program-

ming language based on the λ-calculus containing both functional and imperative

features. In section 3, we describe two semantics for this language, one based on

capsules and the other on closures. In section 4, we show a very strong correspon-

dence (Theorem 4.5) between the two semantics, showing that every computation in

the semantics of capsules is bisimilar to a computation in the semantics of closures,

and vice-versa. In section 5, we show (Propositions 5.1–5.4) that closure semantics

retains some unnecessary information that capsule semantics omits, attesting of the

simplicity of capsules. We finish with a discussion in section 6.

2 Syntax

2.1 Expressions

Expressions Exp = {d, e, a, b, . . .} contain both functional and imperative features.

There is an unlimited supply of variables x, y, z, . . . of all (simple) types, as well as

J.-B. Jeannin / Electronic Notes in Theoretical Computer Science 276 (2011) 191–213192



Download	English	Version:

https://daneshyari.com/en/article/423893

Download	Persian	Version:

https://daneshyari.com/article/423893

Daneshyari.com

https://daneshyari.com/en/article/423893
https://daneshyari.com/article/423893
https://daneshyari.com/

