
Ramified Corecurrence and Logspace

Ramyaa Ramyaaa and Daniel Leivanta,b

a Indiana University

b LORIA Nancy

Abstract

Ramified recurrence over free algebras has been used over the last two decades to provide machine-
independent characterizations of major complexity classes. We consider here ramification for the dual
setting, referring to coinductive data and corecurrence rather than inductive data and recurrence.
Whereas ramified recurrence is related basically to feasible time (PTime) complexity, we show here that
ramified corecurrence is related fundamentally to feasible space. Indeed, the 2-tier ramified corecursive
functions are precisely the functions over streams computable in logarithmic space. Here we define the
complexity of computing over streams in terms of the output rather than the input, i.e. the complexity of
computing the n-th entry of the output as a function of n. The class of stream functions computable in
logspace seems to be of independent interest, both theoretical and practical.
We show that a stream function is definable by ramified corecurrence in two tiers iff it is computable
by a transducer on streams that operates in space logarithmic in the position of the output symbol being
computed. A consequence is that the two-tier ramified corecursive functions over finite streams are precisely
the logspace functions, in the usual sense.

Keywords: Coinductive data, stream automata, corecurrence, lazy corecurrence, ramification, logarithmic
space, implicit computational complexity

1 Introduction

1.1 Overview

Implicit computational complexity (ICC) deals with intrinsic properties of com-

plexity classes, properties that do not refer directly to machine-based resources,

such as computation time or space. That is, one matches complexity measures de-

fined in terms of machine models resources, such as time and space, with declarative

paradigms that are restricted along functionality, linearity, repetitions, flow control,

or similar parameters. The benefits and potential applications of this research are

well known (see e.g. [3,14]). Of particular practical interest is the characterization

of computational complexity classes by restricted but natural declarative program-

ming languages, since such languages guarantee complexity bounds automatically.

1 {ramyaa,leivant}@indiana.edu

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 276 (2011) 247–261

1571-0661 © 2011 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2011.09.025
Open access under CC BY-NC-ND license. 

http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2011.09.025
http://dx.doi.org/10.1016/j.entcs.2011.09.025
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/


A well known approach along these lines is data ramification, also known as

tiering. One thinks of data as coming in varying computational strengths. For

example, very large data may be thought of as a database to be queried, but too large

to be used as a template to drive another recurrence; that is, a function’s recurrence

argument should be at a higher tier than its output. Data tiering has been used to

characterize PTime [3,14], PSpace [15], as well as other feasible complexity classes.

Here we explore the ramification approach for coinductive, rather than inductive

data, in particular streams rather than words. We identify a natural notion of

logspace Turing machines over streams, and show that it computes those functions

over streams that are definable by ramified corecurrence (using two tiers). More

precisely, our data-type of choice is the set S(Σ) of infinite as well as finite streams

over a fixed finite alphabet Σ, i.e. the set generated coinductively (in a sense to be

made precise below) from the nullary constructors ε and σ for each σ ∈ Σ, and the

constructor cons, with the proviso that the first argument of cons is a symbol σ ∈ Σ.

When ε is absent as constructor, we get the infinite streams only. As usual we write

σ : S for the stream cons(σ, S). Evidently, our streams are merely a notational

variant of words, infinite as well as finite, over the alphabet Σ.

The connections between coinduction and automata have been studied exten-

sively in a category theoretic setting (see e.g. [21]). Corecurrence (without ramifi-

cation) were similarly studied in [26,25].

Relations between corecursion and implicit computational complexity have also

been explored. A program scheme based on safe recursion over streams was given

in [5], but its computational complexity was not fully discussed. Feree et als. [9]

use first order functional programs over streams to characterize complexity classes

of functionals using second order polynomial interpretations. Semantic characteri-

zations have been given for stream programs’ termination and complexity in [10].

These characterizations are for streams over words or natural numbers rather than

the digit streams we consider here. Finally, we have studied in [19] the relation

between ramified corecurrence over words and the basic feasible functionals of Cook

and Urquhart [8]. In the latter one mixes inductive and coinductive data, and

ramification applies to both.

2 Machine transducers over streams

2.1 Finite transducers

We consider machine models for computing functions from streams to streams. Our

basic machine model is the finite transducer (FT) over streams (often defined over ω-

words instead), which allows for one-way reading of the input, and one-way writing

of the output, with no requirement to either read or write during a computation

step. 2 Note the differences between finite transducers, where acceptance conditions

play no role, and familiar finite acceptors, such as Büchi automata. As for FTs

over words, FTs over streams can differ in the number of cursors, in their allowed

2 An equivalent formulation has the machine read a finite word and write a finite word at each step, where
each of the two words may be empty [20].

R. Ramyaa, D. Leivant / Electronic Notes in Theoretical Computer Science 276 (2011) 247–261248



Download English Version:

https://daneshyari.com/en/article/423896

Download Persian Version:

https://daneshyari.com/article/423896

Daneshyari.com

https://daneshyari.com/en/article/423896
https://daneshyari.com/article/423896
https://daneshyari.com

