
Static Analysis by Abstract Interpretation:
A Mathematical Programming Approach

Eric Goubaulta,2,1, Stéphane Le Rouxb,3, Jeremy Lecontec,4,
Leo Libertib,5 and Fabrizio Marinellid,6

a CEA Saclay, France

b LIX, École Polytechnique, 91128 Palaiseau, France
c Dep. Info., ENS, 45 rue d’Ulm, 75005 Paris, France

d DIIGA, Univ. Politecnica delle Marche, Ancona, Italy

Abstract

Static analysis of a computer program by abstract interpretation helps prove behavioural properties of the
program. Programs are defined by means of a forward collecting semantics function relating the values
of the program variables during the execution of the program. The least fixed point of the semantics
function is a program invariants providing useful information about the program’s behaviour. Mathematical
Programming is a formal language for describing and solving optimization problems expressed in very
general terms. This paper establishes a link between the two disciplines by providing a mathematical
program that models the problem of finding the least fixed point of a semantics function. Although we
limit the discussion to integer affine arithmetic semantics in the interval domain, the flexibility and power
of mathematical programming tools have the potential for enriching static analysis considerably.

Keywords: Guaranteed smallest code invariant, constraints, bilinear MINLP, policy iteration,
branch-and-bound.

1 Introduction

Static Analysis by Abstract Interpretation (SAAI) was introduced by Cousot and
Cousot in [9] and [10], and further developed, e.g., in [11]. It is widely used in static

1 We thank David Monniaux and Nicolas Halbwachs for many enlightening discussions and precious sug-

gestions. This work was partially supported by grants: Île-de-France research council (post-doctoral fellow-
ship), System@tic consortium (“EDONA” project), ANR 07-JCJC-0151 “Ars”, ANR 08-SEGI-023 “Asopt”,
Digiteo Emergence “Paso”.
2 Email: eric.goubault@cea.fr
3 Email: leroux@lix.polytechnique.fr
4 Email: jeremy.leconte1@ens.fr
5 Email: liberti@lix.polytechnique.fr
6 Email: marinelli@diiga.univpm.it

Electronic Notes in Theoretical Computer Science 267 (2010) 73–87

1571-0661 © 2010 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2010.09.007
Open access under CC BY-NC-ND license.

mailto:eric.goubault@cea.fr
mailto:eric.goubault@cea.fr
mailto:leroux@lix.polytechnique.fr
mailto:leroux@lix.polytechnique.fr
mailto:jeremy.leconte1@ens.fr
mailto:jeremy.leconte1@ens.fr
mailto:liberti@lix.polytechnique.fr
mailto:liberti@lix.polytechnique.fr
mailto:marinelli@diiga.univpm.it
mailto:marinelli@diiga.univpm.it
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2010.09.007
http://creativecommons.org/licenses/by-nc-nd/3.0/

analysis of imperative programs to approximate the behaviour of a program, for in-
stance in terms of its variable environments. Given a program, one builds a forward
collecting semantics function expressing statically how the environments at a given
control point depend dynamically on other control points. This function has a least
fixed point (lfp), which is the “best” information that the function may give about
the program. Usual methods to compute the lfp range from increasing sequences of
under-approximations (relying on Kleene fixed point theorem), decreasing sequences
of over-approximations (relying on Tarski fixed point theorem), or both methods
combined (relying on widening). The Policy Iteration (PI) method was introduced
on the interval domain in [7], further developed in [1] and extended to other (re-
lational) domains in [12,2]. PI computes the lfp when the semantics function is
non-expansive in the sup norm, and a fixed point otherwise. Another PI method on
intervals was described in [14] and later generalized to relational domains in [15].

Computing the lfp of the semantics function is quite naturally an optimization
problem. Mathematical Programming (MP) is a declarative language that describes
the solution of very general optimization problems [26]. An MP consists of a set
of parameters (encoding the problem input prior to the solution process), a set of
decision variables x ∈ R

n (encoding the problem output after the solution process),
an objective function f : R

n → R, a set of equality and/or inequality constraints
g(x) ≤ 0 with g : R

n → R
m, a set of variable bounds xL ≤ x ≤ xU and a set of inte-

grality constraints ∀j ∈ Z xj ∈ Z [19]. MPs are categorised according to the nature
of the solution as: Linear Programs (LPs), Nonlinear Programs (NLPs), Mixed-
Integer Linear Programs (MILPs), Mixed-Integer Nonlinear Programs (MINLPs),
each category having dedicated solution algorithms.

We study the following decision problem.

Static Analysis by Abstract Interpretation Problem (SAAIP). Given a
program written in the language P (defined in Sect. 2) does its semantics function
(defined in Sect. 3.1) have a finite lfp?

SAAIP is actually a problem schema, because it can be parametrized by the type of
abstraction used to overapproximate the concrete program semantics. This paper
aims to establish a strong link between SAAI and MP by formalizing the search
for the lfp by means of a MP formulation. When the semantics function only in-
cludes integer convex arithmetic, the MP turns out to be a MINLP with convex
objective and constraints, which can always be solved to optimality in worst-case ex-
ponential time [4]. For semantics functions including continuous and/or nonconvex
arithmetic, the resulting MINLP can be solved to ε-approximation using the spatial
Branch-and-Bound (sBB) algorithm [3]. The MP standard toolbox also includes
several practically efficient heuristic methods [5,21] which find non-optimal but fea-
sible solutions: in the present setting, these correspond to fixed points without
guarantee of minimality, which may provide useful information about the program.
The flexibility of MP can hardly be underestimated: variable relations, for example,
simply give rise to additional constraints which can just be adjoined to the current
MP formulation.

We set the framework by exemplifying the use of MP in SAAI limited to a

E. Goubault et al. / Electronic Notes in Theoretical Computer Science 267 (2010) 73–8774

Download English Version:

https://daneshyari.com/en/article/423964

Download Persian Version:

https://daneshyari.com/article/423964

Daneshyari.com

https://daneshyari.com/en/article/423964
https://daneshyari.com/article/423964
https://daneshyari.com

