
Temporal Assertions using AspectJ

Volker Stolz1 and Eric Bodden1

Dept. of Computer Science
Programming Languages and Program Analysis

RWTH Aachen University
52056 Aachen, Germany

Abstract

We present a runtime verification framework for Java programs. Properties can be specified in
Linear-time Temporal Logic (LTL) over AspectJ pointcuts. These properties are checked during
program-execution by an automaton-based approach where transitions are triggered through as-
pects. No Java source code is necessary since AspectJ works on the bytecode level, thus even
allowing instrumentation of third-party applications. As an example, we discuss safety properties
and lock-order reversal.

Keywords: Runtime verification, LTL, AspectJ, aspect-oriented programming, alternating
automata.

1 Introduction

To avoid misbehaviour, many software products include assertions which check
that certain states on the execution path satisfy given constraints and other-
wise either abort execution or execute specific error-handling. These assertions
are usually limited to testing the values of variables. However, often it would
be convenient not only to reason about a single state but also about a se-
quence of states. This enables the developer to reason about control flow and
execution paths. In previous work [15], we discussed a symbolic checker for
parametrised LTL formulae over finite paths which allowed us e.g. to reason
about a problem found in multi-threaded applications commonly referred to
as lock order reversal. At runtime, potential problems would be pointed out

1 Email: {stolz,bodden}@i2.informatik.rwth-aachen.de

Electronic Notes in Theoretical Computer Science 144 (2006) 109–124

1571-0661 © 2006 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.02.007
Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


to the developer. We have implemented a working prototype with similar
functionality for Java applications using a symbolic checker based on the code
generation approach we describe in the following. The major contribution of
this work is to propose an alternative, automaton-based solution which allows
for even more expressiveness, though yielding better performance.

A major drawback of the former approach was that annotations driving
the checker had to be inserted into the source code of the application under
test. For practical purposes, we supplied an annotated replacement for the
concurrency-library. Applications wishing to use this framework thus had to
be recompiled.

Also, such source code-based hooks may lead to severe problems with re-
spect to object-oriented properties such as behavioural subtyping: Any speci-
fication which is stated for a certain class should also hold for all its subclasses.
The use of source code annotations within method bodies does not reflect such
implicit rules. Thus we restrict our formalism in such a way that it only al-
lows to reason about well-defined interfaces, meaning method calls and field
accesses. The recent success of the utility Valgrind [11] shows that there is
sufficient demand for better debugging support (in contrast to techniques like
model checking).

In Section 2 we give a short introduction into temporal logic. Instead
of symbolically checking a formula, we use a translation into an alternating
automaton. Section 3 discusses instrumentation of (Java) applications and
focuses on aspect-oriented programming in AspectJ. The combination of LTL
and AspectJ in Section 4 yields a state-machine for each formula to be checked
through a finite automaton where transitions are driven by an aspect. We
discuss an extension to parametrised automata for handling recurring patterns
with state and conclude in Section 5.

2 From LTL to alternating automata

In this section we give a finite path semantics for LTL and remind the reader
on how to translate LTL formulae into alternating automata.

2.1 Path semantics for LTL

Linear-time temporal logic (LTL) [12] is a subset of the Computation Tree
Logic CTL∗ and extends propositional logic with operators which describe
events along a computation path. The operators of LTL have the following
meaning:

• “Next” (X ϕ): The property ϕ holds in the next step

V. Stolz, E. Bodden / Electronic Notes in Theoretical Computer Science 144 (2006) 109–124110



Download English Version:

https://daneshyari.com/en/article/424013

Download Persian Version:

https://daneshyari.com/article/424013

Daneshyari.com

https://daneshyari.com/en/article/424013
https://daneshyari.com/article/424013
https://daneshyari.com

