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Abstract

Given any symmetric monoidal category C, a small symmetric monoidal category ¥ and a strong monoidal
functor j: ¥ — C, it is shown how to construct C[z: jX], a polynomial such category, the result of freely
adjoining to C a system x of monoidal indeterminates for every object j(w) with w € ¥ satisfying a
naturality constraint with the arrows of 3. As a special case, we show how to construct the free co-affine
category (symmetric monoidal category with initial unit) on a given small symmetric monoidal category.
It is then shown that all the known categories of “possible worlds” used to treat languages that allow for
dynamic creation of “new” variables, locations, or names are in fact instances of this construction and hence
have appropriate universality properties.
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1 Introduction

The concept of a polynomial algebra R|x], constructed from an algebra R by freely
adjoining an indeterminate element z, is familiar from algebra. Similarly, Lambek
and Scott [12, Part I, Section 5] show how to construct a cartesian (or cartesian
closed) polynomial category Clz:c] from a base cartesian (closed) category C by
freely adjoining an indeterminate arrow z:1 — c.

The polynomial algebra R|x] is the “most general” such extension of R. Simi-
larly, the polynomial category C[z: ] is the most general cartesian (closed) exten-
sion of C containing indeterminate x. Such properties are proved as universality
results. For example, consider the embedding R,: C — CJz] of C into C[z:¢], any
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cartesian (closed) functor F: C — D, and any d:1 — F'(c) in D; then there exists
a unique cartesian (closed) functor F|¢ from C[z:¢] to D such that (F|%)(z) = d
and F|¢- R, = F:

C[a:c]

R L Fg

<
C L D

In this work, we develop comparable technology for symmetric monoidal cate-
gories [14]. Given a symmetric monoidal category C, a small symmetric monoidal
category X, and a strong monoidal functor j: ¥ — C, we show how to construct
C[z: jX], the symmetric monoidal polynomial category that results from freely ad-
joining, for every object j(w) for w € X, indeterminates x,,): I — w satisfying a
naturality constraint with respect to the arrows of . When X is the sub-symmetric
monoidal category freely generated by some set of C objects® the indeterminates
are completely “free,” as in the examples described above.

We believe this construction has many applications. As our leading exam-
ples, we consider the categories of “possible worlds” that have been used in the
semantics of imperative programming languages. John Reynolds and Frank Oles
[31,23,24,25,19] show how block-structured storage management in ALGOL-like lan-
guages [22] may be explicated using a semantics based on functor categories W = S|
where W is a suitable category of “worlds” characterizing local aspects of storage
structure, and S is a conventional semantic category of sets or domains. Every
programming-language type 6 is interpreted as a functor [#]: W — S and every
programming-language term-in-context 7w = X:6 is interpreted as a natural trans-
formation [r - X:0]: [x] = [6].

Oles gives two presentations of his category of worlds and shows that they are
equivalent. Reynolds presents what seems to be a different category of worlds; how-
ever, it has recently been shown [7] that, under reasonable closedness assumptions,
it is in fact equivalent to Oles’s category.

The functor-category framework has also been exploited to analyze noninterfer-
ence in Reynolds’s specification logic [30,32,36,16,20], block expressions in ALGOL-
like languages [35], and passivity in a variant of Reynolds’s Syntactic Control of
Interference [29,17]. These applications used a related but significantly different
category of worlds, due to Tennent.

Several authors [15,28,33,34,3] have used finite sets (of locally available “loca-
tions” or “names”) as worlds, with injections as the morphisms.

What is noteworthy about all of this work is that the categories of worlds in-
volved have been developed in ad hoc fashion and their properties have not been
well understood. We show here that all of these categories of worlds are instances
of our monoidal polynomial construction and have universality properties.

The construction of Clz: jX] and its key properties, such as universality, and

4 ie., the sub-symmetric monoidal category consisting of all tensorings of the objects, with arrows being

the relevant structural isomorphisms of C.
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