
Enhancing Theorem Prover Interfaces with

Program Slice Information

Louise A. Dennis
1 ,2

School of Computer Science and Information Technology
University of Nottingham, Nottingham, UK

Abstract

This paper proposes an extension to theorem proving interfaces for use with proof-directed debugging and
other disproof-based applications. The extension is based around tracking a user-identified set of rules to
create an informative program slice. Information is collected based on the involvement of these rules in both
successful and unsuccessful proof branches. This provides a heuristic score for making judgements about
the correctness of any rule.
A simple mechanism for syntax highlighting based on such information is proposed and a small case study
presented illustrating its operation. No implementation of these ideas yet exists.

Keywords: Proof-Directed Debugging, Program Slicing, Verification

1 Introduction

The use of verification for locating errors in theorems, and more specifically pro-

grams, is a relatively neglected area as is the provision of interfaces to assist in this

task. This paper considers the proof-directed debugging of functional programs and

proposes an extension to current theorem proving interfaces to support this.

The extension is based on the assumption that the debugging process involves

locating a program statement or, in the case of functional programs, function case

which is incorrect. This incorrect statement will appear in a program slice which

can be identified during verification. Other program slices leading to correct de-

ductions may also be identified during proof. This information can then be used

to create appropriate syntax highlighting of function cases in an interface. A po-

tential highlighting scheme is put forward and a simple case study based around

Isabelle/HOL [12] and ProofGeneral [1] is performed to show how this would work.

1 This research was funded by EPSRC grant GR/S01771/01 and Nottingham NLF grant 3051.
2 Email:lad@cs.nott.ac.uk

Electronic Notes in Theoretical Computer Science 174 (2007) 19–33

1571-0661 © 2007 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.09.019
Open access under CC BY-NC-ND license.

mailto:lad@cs.nott.ac.uk
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


No implementation has yet been performed however potential issues are dis-

cussed in the context of Isabelle Proof General.

Although the discussion in this paper is based around an application to proof-

directed debugging it is likely that similar mechanisms may also be useful in other

situations where the cause of a proof failure needs to be identified.

The paper is organised as follows: §2 discusses the concepts of proof-directed

debugging and program slicing; §3 present a mechanism for tracking program slices

through a proof and §4 presents examples of this mechanism at work via a simple

case study; §5 discusses some results using a similar mechanism within an automated

system; §6 looks at some related work and §7 discusses implementation issues and

other further work.

2 Proof Directed Debugging and Program Slicing

Proof-directed debugging was first suggested by Harper [10] and work is underway

to extend this into a framework for locating program errors through the proof pro-

cess [6]. The idea of using a framework rather than relying on a user’s skill at general

proof, is based on the example of Algorithmic debugging [15,9,11]. Algorithmic de-

bugging constructs an execution tree of a run of the program on some input and

then queries the user each time this tree branches. This identifies branches which

are returning false results and so locates sections of code responsible for errors.

Program Slicing was first suggested by Weiser [17]. The key idea was to identify

a variable of interest at some point in a program (called the slicing criterion) and

then extract a fragment of the program (a program slice) either containing all those

statements upon which the value of the variable at that point depended or that

fragment whose values were effected by the value of that variable at that point.

Program Slicing techniques for imperative languages have generally followed this

work [16] using control flow graphs, data flow graphs or other graph-based repre-

sentations of programs with statements represented as nodes in the graph and a

program slice as a set of nodes from the graph. In functional programs function

application takes the place of program statements. The notion of a slicing criterion

can also be generalised (e.g. to a projection as in [14]).

The intention behind proof-directed debugging is to use the branching structure

of a proof to create program slices and use these to assist in the location of errors.

There is clearly a need to provide appropriate tools (i.e. tactics/Isar methods)

tailored to this task. This paper does not concentrate on this aspect but consid-

ers instead the way a theorem prover’s interface could assist a user through the

presentation of relevant program slices.

3 Proof Tree Branches as a Slicing Criterion

The verification of functional programs naturally involves splitting a program into a

set of equational rules each corresponding to a case in its functional definition. The

usage of these rules in the proof can thus be tracked, effectively creating a program

L.A. Dennis / Electronic Notes in Theoretical Computer Science 174 (2007) 19–3320



Download English Version:

https://daneshyari.com/en/article/424102

Download Persian Version:

https://daneshyari.com/article/424102

Daneshyari.com

https://daneshyari.com/en/article/424102
https://daneshyari.com/article/424102
https://daneshyari.com

