
Formal Methods for MPI Programs

Ganesh Gopalakrishnan and Robert M. Kirby 1 ,2

School of Computing
University of Utah

Salt Lake City, UT 84112, USA

Abstract

High-end computing is universally recognized to be a strategic tool for leadership in science and
technology. A significant portion of high-end computing is conducted on clusters running the Mes-
sage Passing Interface (MPI) library. MPI has become the de facto standard in high performance
computing (HPC). Our research addresses the need to avoid bugs in MPI programs through a
combination of techniques ranging from the use of formal specifications to the use of in-situ model
checking techniques. This paper details an assessment of the efficacy of these techniques, as well
as our future work plans.

Keywords: MPI, distributed programs, message passing, formal methods, model checking, formal
specifications

1 Introduction

The importance of high-end computing (sometimes called high performance
computing, or HPC) needs very little motivation in a modern context. HPC is
universally recognized to be a strategic tool for leadership in science and tech-
nology. A significant portion of high-end computing is conducted on clusters
running the Message Passing Interface (MPI [1]) library. In these applications,
system models occurring across a broad range of real-world applications—
anywhere from chemical boilers to weather models—are studied through sim-
ulations. MPI has become the de facto standard in HPC. As an expert observes
[2], MPI’s popularity is due to several resons:

1
Email: ganesh@cs.utah.edu

2
Email: kirby@cs.utah.edu

Electronic Notes in Theoretical Computer Science 193 (2007) 19–27

1571-0661 © 2007 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.10.005
Open access under CC BY-NC-ND license.

mailto:ganesh@cs.utah.edu
mailto:kirby@cs.utah.edu
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


• Portability: The need for portability is high, because code tends to outlive
hardware.

• The ability to smoothly map primitives to hardware architectures.

• The large variety of calls that allows each user to find subsets that are
well-matched to their needs.

• Its orthogonality in terms of what combinations of features are allowed.

Just as is the case with parallel programs in general, MPI programs in
particular can contain bugs. Specifically, the sources of MPI program bugs
have been identified to include the following. First of all, the large number
of functions in MPI libraries can overwhelm developers. Second, MPI is most
commonly taught or learned at an informal level. As such, programmers
writing advanced MPI applications may overlook corner cases. Finally, MPI
programs are not static; they are sometimes manually re-tuned when ported
to a new hardware platform.

This paper is about our ongoing research that emphasizes the use of for-
mal methods for making the creation of bug-free MPI programs easier. Our
approach consists of (i) developing a formal model of the MPI library, (ii) de-
veloping in-situ (run-time) model checking tools, and (iii) developing static
analysis support for enhancing the efficacy of model checking. This paper
briefly describes our ongoing work in these areas, as well as our future plans.
The authors wish to acknowledge the impact that Professor Gary Lindstrom
had in the parallel computing research conducted at the University of Utah,
and thank him for his feedback and encouragement of the research reported
here.

The rest of the paper is organized as follows. In Section 2, we present an
overview of our work underway in developing a formal specification for MPI.
In Section 3, we describe our work on developing an in-situ model checker for
MPI. In-situ model checking was introduced in VeriSoft [13] in the context
of directly model checking C/C++ programs. Ours is believed to be the
first realization of this idea for MPI programs. In Section 4, we present an
assessment of our work so far, and draw conclusions for the future.

Related Work:

As far as we now, there is only one other group – namely that of Siegel and
Avrunin – that has actively investigated the use of formal methods for high
performance computing using MPI. Some of their past publications include
[7,8,9]. The main differences between these works and ours are the following:
(i) in Siegel and Avrunin’s work, a declarative formal specification for MPI has
not been proposed; (ii) they employ traditional model checking using SPIN

G. Gopalakrishnan, R.M. Kirby / Electronic Notes in Theoretical Computer Science 193 (2007) 19–2720



Download English Version:

https://daneshyari.com/en/article/424281

Download Persian Version:

https://daneshyari.com/article/424281

Daneshyari.com

https://daneshyari.com/en/article/424281
https://daneshyari.com/article/424281
https://daneshyari.com

