
Using Term-Graph Rewriting Models

to Analyse Relative Space Efficiency

Adam Bakewell

Department of Computer Science, University of York, York YO10 5DD, UK
ajb@cs.york.ac.uk

Abstract

Space leaks are a common operational problem in programming languages with automated memory man-
agement. Graph rewriting is a natural model of operational behaviour. This paper summarises a PhD
thesis which gives a graph-rewriting framework suitable for modelling language implementations and proof
techniques for determining the presence or absence of leaks. The approach is to model implementations as
graph evaluators with garbage collectors. An evaluator may leak relative to another evaluator, with respect
to a translation between their states. Leaks are classified according to their cause and the behaviour which
exposes them.
Graphs naturally model state size, but we argue that this is too concrete. Accurate evaluators are introduced
which allow for a more abstract model in which initial program size is ignored. Evaluators are compared
by defining a translation between graphs. Space-safe translations, and non-standard garbage collectors, are
defined as another kind of term-graph rewrite system. Leaky evaluators are detected by a proof method
which searches for graphs whose evaluation trace is a self-feeding rule sequence.

Keywords: Term-graph rewriting, automated memory management, space leak

1 Introduction

Space leaks are a common operational problem in programming languages with au-

tomated memory management. Typically, space leak refers to the situation where

objects persist in memory after they are known to be unwanted. Leaks are a no-

toriously difficult problem in lazy functional languages like Haskell [10]: programs

do not fully specify their operational behaviour, and compilers are expected to op-

timise the performance of programs. It is hard to predict the space behaviour of

the simplest implementations — they can differ wildly from the programmer’s ex-

pectations. Compilers cannot predict exactly when an object becomes unwanted

and garbage collectors cannot tell exactly which objects are unwanted, owing to the

undecidability of garbage [8]. Ignoring the programmer’s concern of how to predict

space usage, the problem is: how to specify a leak-free standard of space usage for

a language; how to decide whether an implementation has a leak; how to decide if

an optimisation introduces or eliminates a leak.

Electronic Notes in Theoretical Computer Science 72 (2007) 3–16

1571-0661 © 2007 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2002.09.002
Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

Graph rewriting is a natural model of operational behaviour: the runtime mem-

ory (heap and stack) with its complex sharing patterns is modelled as a graph; an

evaluation strategy is modelled as a collection of graph rewrite rules; a garbage

collector may be included in the model, perhaps defined by another rewrite system.

This paper introduces a thesis [2] which provides theoretical tools for analysing

the relative space efficiency of different evaluation strategies (evaluators) with

garbage collection. This solves the space leak problem by providing a formal frame-

work in which the space semantics of a language can be specified as a term-graph

evaluator. The space semantics of different implementation techniques can also be

modelled as evaluators. Evaluators can then be compared to decide whether they

are leakier than each other. The graph framework, leak classifications and leak de-

tection methods we present are intended to be applicable to any language. But their

design is influenced by the application used in our examples — that comparison of

lazy evaluators.

Section 2 introduces the term-graph rewriting framework with some example

evaluators. Section 3 is about leaks: what counts as a leak and why; what causes

leaks and how can we classify them. Section 4 discusses why evaluators need to

be accurate to be used with the leak definition. Comparing different evaluators

is based on graph translation, Section 5 shows that translation is another kind

of graph rewriting with a space property. Section 6 is about detecting leaks by

searching through sequences of evaluator rules. There is not room for definitions

and proofs here: see [2] for full details.

2 Three Call-by-Need Evaluators

Before discussing space we introduce the term-graph model by way of three example

lazy evaluators. These evaluators do not represent real compilers, rather they serve

as abstract definitions of some different lazy evaluation techniques. All three eval-

uate programs which are represented as graphs of terms built from the expression

grammar X ::= λx.X | X x | x | let x = X in X | ⊥. This is a fairly standard,

simple, core functional language — we do not consider a complete real language for

simplicity. Note that function symbols like λ and let are higher-order, each binding

one variable whose scope is restricted to their sub-terms. Free variables in a term

are arcs to other graph nodes. Note that we follow the standard notation in our

presentation, rendering the ’apply-to’ function symbol as an infix space and so on.

The ⊥ function is a place-holder used during evaluation.

Lazy Graph Evaluation

The first evaluator lazy in Fig. 1 is a term-graph version of Sestoft’s Mk.1 ma-

chine for lazy evaluation [11], which closely models the STG-machine used by some

Haskell compilers [9]. It is also a simplification of our space semantics for Core

Haskell [3].

Evaluators are higher-order term-graph rewriting models of implementations

(Ch. 4 of [2]). Briefly, graphs model state as a set of nodes which are mapped to

A. Bakewell / Electronic Notes in Theoretical Computer Science 72 (2007) 3–164

Download English Version:

https://daneshyari.com/en/article/424340

Download Persian Version:

https://daneshyari.com/article/424340

Daneshyari.com

https://daneshyari.com/en/article/424340
https://daneshyari.com/article/424340
https://daneshyari.com

