
A Higher-Order Calculus for Graph

Transformation 1

Maribel Fernández and Ian Mackie2 ,3

Department of Computer Science, King’s College, Strand, London WC2R 2LS

Jorge Sousa Pinto4

Departamento de Informática, Universidade do Minho, 4710-057 Braga, Portugal

Abstract

This paper presents a formalism for defining higher-order systems based on the notion of graph transfor-
mation (by rewriting or interaction). The syntax is inspired by the Combinatory Reduction Systems of
Klop. The rewrite rules can be used to define first-order systems, such as graph or term-graph rewriting
systems, Lafont’s interaction nets, the interaction systems of Asperti and Laneve, the non-deterministic nets
of Alexiev, or a process calculus. They can also be used to specify higher-order systems such as hierarchical
graphs and proof nets of Linear Logic, or to specify the operational semantics of graph-based languages.

Keywords: Higher-order system, graph transformation, Combinatory Reduction System, graph rewriting
system

1 Introduction

Rule-based transformations of graphs have been used in many areas of computer

science, including the specification and development of software systems, the defini-

tion of visual languages, the implementation of programming languages (see [5,25]).

The notion of interaction, which can be seen as a particular kind of graph trans-

formation, has been used to model concurrent systems [23], to give a semantics to

(linear) logic proofs [11], as a programming discipline [17], and as an implementation

technique for functional languages [3]. In each case, a syntax and an operational

semantics (a calculus) has been defined, often independently.

1 Partially supported by TMR LINEAR.
2 Email: maribel@dcs.kcl.ac.uk
3 Email: ian@dcs.kcl.ac.uk
4 Email: jsp@di.uminho.pt

Electronic Notes in Theoretical Computer Science 72 (2007) 45–58

1571-0661 © 2007 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2002.09.005
Open access under CC BY-NC-ND license.

mailto:maribel@dcs.kcl.ac.uk
mailto:ian@dcs.kcl.ac.uk
mailto:jsp@di.uminho.pt
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


In this paper we present a higher-order language that can serve to specify in-

teraction systems as well as graph and term-graph rewriting systems. The syntax

is inspired by the Combinatory Reduction Systems (CRSs) of Klop [16], and can

be seen as a generalization of the equational notation for term-graph rewriting [2].

We demonstrate its use by giving several examples of application, including the

definition of hierarchical graphs (where it is possible to abstract subgraphs, see [4]

for more details), a first-order interaction language together with its operational

semantics (all in the same language), and the specification of higher-order program

transformations and optimization schemes. The latter will be defined for Lafont’s

interaction nets [17].

¿From a practical point of view, the higher-order syntax can be used as a tool in

the design and implementation of graphical languages: it allows us to express not

only graphical programs but also their operational semantics (including evaluation

strategies and optimization schemes), type systems, and transformations used in

the proof of meta-theoretical properties of programs. An instance of the latter

kind of transformation is the packing operator defined by Lafont [19] to prove the

universality of the interaction combinators (a specific system of interaction nets

in which every interaction net can be encoded). Other packing and unpacking

operations have been described in [9], and they can all be formally defined using

higher-order rules in our system.

Another aspect where the higher-order syntax presents advantages is for struc-

turing and modularizing programs defined by graphs (or nets). Hierarchical defini-

tions are very useful in the framework of graph rewriting [4], and the same techniques

can be exported to interaction nets using the higher-order syntax. In particular,

the operation that combines two interaction nets to produce a new net where one or

more edges have been connected together (the analogous of application in functional

programming) is currently a meta-operation. We show how to internalize it using

the higher-order language, and give examples where this technique is used to write

modular programs. Once we have the ability to model the combination of nets, it

is straightforward to express a notion of higher-order interaction nets, where a net

depends on another net. As with functional programming, this technique can be

used to write recursive nets: nets which depend on themselves.

Related Work. Our syntax is inspired by CRSs, but similar results can be ob-

tained by using other higher-order systems, such as Nipkow’s Higher-order Rewrite

Systems [22], or Khasidashvili’s Expression Reduction Systems [13]. The three for-

malisms are closely related [26]. CRSs have been used in previous work on interac-

tion nets: Laneve [20] defined Interaction Systems as CRSs, and in [7] a translation

function is given from interaction nets to CRSs.

Van Raamsdonk [27] defines a class of higher-order rewrite systems with a gen-

eral notion of substitution and shows the encoding of several languages, including

Interaction Systems and Proof Nets of linear logic. Our goal is more specific: our

higher-order textual notation has been designed to represent graph-based transfor-

mations, and therefore the calculus contains specific graph-oriented features. The

notation used to represent graphs in the calculus is a generalization of the equational

M. Fernández et al. / Electronic Notes in Theoretical Computer Science 72 (2007) 45–5846



Download English Version:

https://daneshyari.com/en/article/424343

Download Persian Version:

https://daneshyari.com/article/424343

Daneshyari.com

https://daneshyari.com/en/article/424343
https://daneshyari.com/article/424343
https://daneshyari.com

