
Extending a Component Specification

Language with Time

Björn Metzler1 and Heike Wehrheim2

Institut für Informatik
Universität Paderborn

33098 Paderborn, Germany

Abstract

In a formal approach to component specification, interfaces are usually described using pre- and postcondi-
tions of methods or protocols. In this paper we present an approach for integrating time into a component
specification language which already allows for pre/post and protocol descriptions. The specification of
timing aspects is indispensable when treating components of embedded systems underlying hard real-time
requirements. In order to allow for a smooth integration into the existing specification language and to ease
reading and writing of interfaces, we do not extend the language with yet another formalism (for time), but
instead only add a specific feature (i.e. clocks) to it. We define a semantics for this new specification language
in terms of timed automata, which thus also opens the possibility of analysing interface descriptions with the
UPPAAL model checker. We furthermore give timed simulation conditions and prove their soundness with
respect to inclusion of timed traces, the notion of implementation in timed automata. This implementation
relation can be used as a correctness criterion for interoperability and substitutability checks.

Keywords: Interface specification, timed automata, pre/post conditions, protocols, simulation,
verification.

1 Introduction

Interfaces of components are typically described by giving signature lists, pre- and

postconditions of methods or by defining protocols (i.e. valid call sequences). Differ-

ent approaches and languages have been proposed for these purposes: the signature

list only technique is the approach adopted by most industrial middleware platforms,

pre- and postconditions are for instance used in [16,28,18] and protocol definitions

for components given as finite state automata, process algebra descriptions or tem-

poral logic can be found in [20,21,11]. For embedded systems, it is however also

1 Email: bmetzler@uni-paderborn.de
2 Email: wehrheim@uni-paderborn.de

Electronic Notes in Theoretical Computer Science 176 (2007) 47–67

1571-0661 © 2007 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.02.031
Open access under CC BY-NC-ND license.

mailto:bmetzler@uni-paderborn.de
mailto:wehrheim@uni-paderborn.de
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


important to specify timing constraints of interfaces, such as deadlines guaranteed

or expected by a component.

In this paper we set out to develop a component specification language which

allows for the specification of pre- and postconditions, protocols and timing con-

straints. The starting point here is an already existing language which contains

features for specifying pre- and postconditions and protocols. The notation, called

CSP-OZ [9], is a combination of the process algebra CSP [12,22] with the state-

based, object-oriented formalism Object-Z [24]. The process algebra is used to

specify specific call sequences guaranteed/expected by the component, the state-

based formalism handles data-dependent aspects like pre- and postconditions of

methods. Both formalisms come with built-in notions of refinement which is the

formal development concept guaranteeing substitutability. Thus refinement can be

used as correctness criterion for interoperability and substituability checks. The

integrated notation CSP-OZ is now extended to allow for the specification of tim-

ing constraints. To this end, we however do not integrate a third formalism into

the existing combination but instead only add a specific clock type for Object-Z

variables. Clock variables can be declared, queried and changed just like ordinary

variables. These clock variables allow for the specification of deadlines, minimum

and maximum delays between method calls etc.. This is similar to the way finite

automata are extended to timed automata [1], which is the standard formalism for

describing systems with timing aspects (they, however, do not allow for a high level

description of state-based and behavioural aspects).

For this specification language (called timed CSP-OZ) we furthermore propose

a method for analysing component interfaces and we define a formal notion of

implementation, which can - like refinement - be used for substitutability checks.

The analysis method is based on a semantics for the language in terms of timed

automata (or more precisely, timed transition systems, since the semantics will not

always yield a finite state automaton). In case of a finite number of states we can

then use one of the timed automata model checkers for verification (e.g. Kronos

[27] or UPPAAL [3]).

Based on this semantics we can furthermore use the notion of implementation

associated with timed automata for timed CSP-OZ. The implementation relation

for timed automata is inclusion of timed traces (language inclusion for words with

time stamps). We define timed simulation conditions and show their soundness with

respect to this relation. This opens the way for a stepwise proof of implementation.

The paper is structured as follows. Next, we start with a simple example of a

timed CSP-OZ specification on which we explain the general idea and which will

serve as an illustration of the main results in the next sections. Section 3 gives a

short introduction to timed automata. We then define the semantics for timed CSP-

OZ specifications in terms of timed automata. In Section 4 we show how to analyse

interface specifications in timed CSP-OZ with the timed automata model checker

UPPAAL. Section 5 gives timed simulation conditions which can be used to prove

B. Metzler, H. Wehrheim / Electronic Notes in Theoretical Computer Science 176 (2007) 47–6748



Download	English	Version:

https://daneshyari.com/en/article/424350

Download	Persian	Version:

https://daneshyari.com/article/424350

Daneshyari.com

https://daneshyari.com/en/article/424350
https://daneshyari.com/article/424350
https://daneshyari.com/

