Future Generation Computer Systems 54 (2016) 1-15

Contents lists available at ScienceDirect

FiBICIS!

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs —

Self-scalable services in service oriented software for cost-effective

data farming

Dariusz Krél*, Jacek Kitowski

=
@ CrossMark

AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Department of Computer Science,

al. A. Mickiewicza 30, Krakow, Poland

HIGHLIGHTS

We define scaling rules to express scaling policy for the service.

We introduce self-scalable services as an extension of Service Oriented Architecture.

Evaluation of the concepts is based on a massively scalable platform for data farming.
Cost-effectiveness is increased in comparison with management based on fulfilling peak load.

ARTICLE INFO

ABSTRACT

Article history:

Received 29 October 2014
Received in revised form

24 June 2015

Accepted 1 July 2015
Available online 10 July 2015

Keywords:

Self-scalability

Autonomous computing
Service Oriented Architecture
Data farming

Software maintenance is one of the major concerns in service oriented ecosystem with an ever-increasing
importance. In many cases, the cost of software maintenance is higher than the cost of software develop-
ment. In particular, long-lasting services, which operate in a dynamically changing environment, require
continuous management and administration. One of the important administration actions is scaling man-
agement. The problem lies in responding to workload changes of the hosted services as fast as possible.
This is especially important in regard to (but not limited to) cloud environments where unnecessary re-
source usage leads to unnecessary costs. In this paper, we are introducing the self-scalable services and
scaling rules, which are intended to support development of self-scalable systems based on Service Ori-
ented Architecture. We propose a design of a self-scalable service based on some of the well-known soft-
ware development practices along with a definition of scaling rules, which express scaling policy for the
service. Both concepts were evaluated in the context of a massively scalable platform for data farming.
The evaluation demonstrates advantages of utilizing the proposed concepts to manage the platform in

comparison with traditional platform management strategies based on fulfilling peak load.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Efficient management of computational resources is one of the
primary challenges in today’s data centers, and the resources uti-
lization level is an essential metric describing a data center ef-
ficiency. Many reports suggest that the level of utilization of a
data center’s resources today is less than 50% [1-3], which indi-
cates very low cost-efficiency of existing infrastructures. This is
especially noticeable in the industry where access to resources is
SLA-driven rather than being best-effort as it is in many academic
facilities. We argue that one of the main reasons is static configu-
ration of resources, which aims at handling the peak workload. In-
stead of using only the necessary amount of resources, a static pool
of resources is maintained all the time to handle infrequent spikes

* Corresponding author.
E-mail address: dkrol@agh.edu.pl (D. Krél).

http://dx.doi.org/10.1016/j.future.2015.07.003
0167-739X/© 2015 Elsevier B.V. All rights reserved.

in the workload. This issue can be addressed at different levels,
concerning both hardware and software. Basic mechanisms at the
hardware level include powering down unused servers and virtual
machines consolidation. At the software level, the main objective
is utilizing the minimal amount of resources that satisfies hosted
software requirements, services in particular. These requirements
heavily depend on the workload generated by service client’s re-
quests. Needless to say, the workload changes depend on the
service’s popularity, hence a combination of static resource con-
figuration and dynamic workload changes (as depicted in [4,5]) of-
ten lead to either overutilized or underutilized resources, and both
cases are undesirable. Here, resource underutilization refers to a
case when a resource is idle more than a defined threshold of some
period of time, e.g. more than 10% of time within a month. The
threshold may vary on case-by-case basis. This is especially notice-
able in the industry where access to resources is SLA-driven instead
of being best-effort only as in many academic facilities.


http://dx.doi.org/10.1016/j.future.2015.07.003
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.07.003&domain=pdf
mailto:dkrol@agh.edu.pl
http://dx.doi.org/10.1016/j.future.2015.07.003

2 D. Krdl, J. Kitowski / Future Generation Computer Systems 54 (2016) 1-15

Two popular approaches which intend to increase resource uti-
lization rate are services consolidation and dynamic adjustment of
the amount of resources utilized by a service to the actual need.
Services consolidation involves services migration from underuti-
lized resources to minimize the number of utilized servers. This
is mainly the scale-in mechanism, i.e. it relates to decreasing the
amount of utilized resources. The second approach - dynamic
adjustment of resources - addresses both scale-in and scale-out
cases. In a today’s data center, services are often scaled manu-
ally: upon discovering a change in workload an administrator al-
locates new resources and reconfigures the service. In most cases,
an expected peak load with some overhead is estimated based on
administrator’s knowledge, and the corresponding amount of re-
sources is allocated upfront. Needless to say, a substantial effort
and expertise is required to estimate the necessary amount of re-
sources for a given service. Any changes in the assumed workload
impacts the utilization level of the allocated resources. Hence, an
online monitoring and adjustment is often required, which can
lead to tremendous administration effort taking into account the
number of services installed in a data center.

The problem of scalability management of a service is common
for a broad range of services used in both scientific and industrial
environments. Examples of this kind of services include audio and
video file transcoding services [6,7], websites load balancing [8],
computation tasks scheduling onto a distributed set of resources,
and any optimization problem solving environments.

Traditional services often require constant monitoring and pos-
sible manual reconfiguration when the workload pattern changes,
e.g. when the number of clients increases or resource usage effi-
ciency drops as a result of competition with other services running
on the same host. In many situations a human administrator needs
to be present all the time simply to ensure that a critical service
continues to operate. System malfunctions resulting from exces-
sive client load often incur significant costs — up to millions of
dollars per hour of downtime [9]. Scientists tackled this problem
with self-adaptive services [10,11], which aimed at dealing with
unpredictable and dynamic load conditions without any human
interaction. Once configured, such a service should adjust itself to
different workload patterns dynamically. Self-scalability is a spe-
cial feature of self-adaptive services, which addresses the problem
of maintaining multiple instances of a service in an automatic man-
ner. Moreover, by using monitoring data, self-scalable services can
be more efficient than their manually operated counterparts due
to faster reaction time. This is especially important in dynamically
changing environments when the workload pattern cannot be de-
termined or predicted beforehand.

Building a self-scalable service can be a challenging task.
Such functionality is typically implemented in a separate module,
often referred to as the management module, responsible for ana-
lyzing service load based on monitoring data and executing scal-
ing actions, e.g. starting a new service instance on a different
server. The management module typically implements an adapta-
tion loop [11], which involves the following four activities:

e online monitoring, i.e. collecting online data about service
workload,

e detection of events that trigger a scaling procedure,

e resource discovery encompasses identification of resources that
can be used during scaling actions; this step does not assume
that all available resources are known a priori, e.g. resources
can be added or removed dynamically within a single data
center, e.g. due to maintenance or transient errors,

e scaling actions execution, which involves acquisition of addi-
tional resources by the service in case of scale out (or releasing
the utilized resources in case of scale-in).

Besides implementing these features, self-scalable services
require knowledge about events that should trigger the scaling
procedure. This knowledge can assume the form of rules which
define conditions under which the management module should
perform certain actions. Such rules are often gathered by observing
the service in real-life scenarios and may be difficult to generate
automatically. Thus, the decision to enhance an existing service
with self-scalability features is not an obvious one.

In this paper, we address the issue of self-scalable software de-
velopment by introducing two concepts: scaling rules and self-
scalable services. The concept of scaling rules provides a formal
way of expressing scaling management knowledge. For a given
platform scaling rules describe how the system should rescale it-
self in response to various conditions. Such rules can be predefined
by domain experts and then utilized automatically by computer
systems. These rules are technology agnostic but are intended to
support service oriented software, in particular different hosted
services can have different rules defined. In order to address
the scalability requirements of modern services, an extension
of Service Oriented Architecture, called self-scalable services, is
proposed, acknowledging the scalability property as a first-class
citizen of software architectures. A self-scalable service extends
the meaning of a software modularization unit with built-in
self-scalability. We propose an architecture of self-scalable ser-
vices, which follows the best software development practices. We
do not address any particular SOA-related technology stack, in-
stead we intend to operate in a generic service-oriented space,
with a technology-agnostic sample implementation. To evaluate
both concepts, we developed a platform for data farming called
Scalarm, which is a complete solution for performing large-scale
simulation-based virtual experiments using a heterogeneous com-
putational infrastructure, i.e. an infrastructure consisting of dif-
ferent environments - clusters, clouds, and grids - each of which
having a different access method.

The remaining part of the paper is organized as follows:
Section 2 introduces related work on self-scalable software
development and algorithms. In Section 3 we propose the concepts
of scaling rules and self-scalable services in regard to their
definition, design and main features. Section 4 describes a sample
implementation of both introduced concepts in the context of
the data farming methodology, while Section 5 provides more
information about utilizing the introduced concepts to manage
scalability of Scalarm in an automatic manner. Section 6 includes
evaluation of the self-scalability of the implemented platform.
Section 7 concludes the paper and outlines future work.

2. State of the art

In this section, we overview recent efforts related to self-
scalable service development. In particular, we aim at design ap-
proaches to self-scalable and highly scalable software, auto-scaling
algorithms, sample implementations of self-scalable software and
infrastructure elasticity supporting self-scalability.

In the context of Service Oriented Architecture, a service is the
basic modularization unit, which exists as an independent soft-
ware program with distinct functional context and is comprised
of a set of capabilities related to this context [12]. The most im-
portant features of services include: standardized service contract,
loose coupling, abstraction, autonomy, reusability, statelessness,
discoverability, composability, discoverability, and granularity. In
our opinion this list lacks the self-scalability feature, which is more
and more important today, but it was not as important when the
feature list was introduced. However, it is worth noticing that the
list includes already important aspects regarding scalability like
statelessness, composability and autonomy.



Download English Version:

https://daneshyari.com/en/article/424518

Download Persian Version:

https://daneshyari.com/article/424518

Daneshyari.com


https://daneshyari.com/en/article/424518
https://daneshyari.com/article/424518
https://daneshyari.com

