Future Generation Computer Systems 54 (2016) 16-40

Contents lists available at ScienceDirect
FiGICIS!

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs =

Web-centred end-user component modelling

—
@ CrossMark

David Lizcano®*, Fernando AlonsoP, Javier Soriano b Genoveva Lopez b

2 Universidad de Distancia de Madrid (UDIMA), Spain
b Universidad Politécnica de Madrid, Spain

HIGHLIGHTS

Programming-illiterate users face barriers exploiting web service composition tools.
We offer a user-centric approach to Internet of Services to tackle these obstacles.

Thus, end users can create applications to support their routine work on their own.

[]
]
e This approach adapts service front-ends for end users to build SOA-based software.
[]
[]

The presented approach elicits the best practices and principles of the current SOTA.

ARTICLE INFO

Article history:

Received 2 September 2014
Received in revised form

15 June 2015

Accepted 1 July 2015
Available online 10 July 2015

Keywords:

End-user programming
Web engineering
Component-based software
Human factors

Visual programming
Component modelling

ABSTRACT

This paper formally defines a web component model enabling end-user programmers to build
component-based rich internet applications (RIAs) that are tailored to meet their particular needs. It is
the product of a series of previously published papers. The formal definition in description logic verifies
that the model is consistent and subsumes currently existing models. We demonstrate experimentally
that it is more effective than the others.

Current tools propose very disparate web component models, which are based on the appropriate
invocation of service backends, overlooking user needs in order to exploit these services and resources in
a friendly manner. We have proposed a web model based on a detailed study of existing tools, their pros
and cons, limitations and key success factors that have enabled other web end-user development (WEUD)
solutions to help end-user programmers to build software to support their needs. In this paper we have
verified that the proposed model subsumes and is instantiated by the models of the other existing tools
that we analysed, coming a step closer to the standardization of end-user centred RIAs and development
environments. We have implemented a development tool, called EzZWeb, to produce RIAs that implement
the proposed model. This tool enables users to develop their application following the model’s component
structure based on end-user programming success factors. We report a statistical experiment in which
users develop increasingly complex web software using the EzZWeb tool generating RIAs that conform to
the proposed component model, and other WEUD tools generating RIAs that conform to other models.
This experiment confirms the applicability of the proposed model and demonstrates that more end-
user programmers (EUPs) (users concerned with programming primarily for personal rather public use)
successfully develop web solutions for complex problems using the EzZWeb tool that implements the
model, which is more efficient than existing tools that implement other models.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

back in 2005 [2]. There are many web-based mashup development
environments that enable millions of users to personally develop

Interest and investment in web end-user development (WEUD)
are mounting all the time, and its impact [1] has even outstripped
forecasts made by Christopher Scaffidi, Brad Myers and Mary Shaw

* Corresponding author.
E-mail address: david.lizcano@udima.es (D. Lizcano).

http://dx.doi.org/10.1016/j.future.2015.07.002
0167-739X/© 2015 Elsevier B.V. All rights reserved.

software solutions to solve their own problems.

Many software suppliers including Microsoft, Apple, IBM, Ya-
hoo!, Oracle, etc., have developed tools providing support for end-
user programmers (EUPs) (programmers who wish to achieve the
result of a program primarily for personal rather public use) [1]
to develop web applications, particularly rich internet applica-
tions (RIAs), offering do-it-yourself (DIY) [3] guidance on how to

http://dx.doi.org/10.1016/j.future.2015.07.002
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.07.002&domain=pdf
mailto:david.lizcano@udima.es
http://dx.doi.org/10.1016/j.future.2015.07.002

D. Lizcano et al. / Future Generation Computer Systems 54 (2016) 16-40 17

evolve end-user developments to meet end-user demands and re-
quirements. Such applications include Chrome Web Store (Chrome
WS) and its Developer Tools [4], Yahoo! Pipes and Dapper [5,6],
Microsoft Popfly [7] (currently closed and offered as part of Mi-
crosoft WebMatrix), Kapow Platform [8], JackBe Presto [9], AMICO
Sketchify [10], Marmite [11] or EzZWeb [12].

These solutions enable EUPs to develop their own software so-
lutions. These solutions help EUPs create a graphical user interface
(GUI) by visually connecting components with different levels of
abstraction in order to access and exploit different types of ser-
vices and resources and solve their particular problem. Each
solution has pros and cons [3,1] and offers distinctive WEUD func-
tionalities for creating end-user solutions. The major weakness is
that each tool defines a web application development model for
building solutions to problems of a particular type and complex-
ity. These models are of no use for EUPs to develop more com-
plex general-purpose RIAs [13,14]. For example, Yahoo! Pipes is
confined to building mashups of data from RSS or HTML sources,
whereas Kapow Platform specializes in building web portals us-
ing screen scraping techniques, and so on. The important thing,
though, is that these WEUD solutions are promoting a new web
component model [15] that has not yet, however, been either fully
structured or formalized. The component models used in these
tools, their strengths and generated products have not yet been
studied in detail in order to define a comprehensive component
model for the web. The race to compete in an increasingly glob-
alized WEUD solutions ecosystem has forced developers (Google,
Yahoo!, Microsoft, Amazon, Apple, Sun, IBM, etc.) to develop and
optimize their own tools in their application environments with-
out formalizing a common underlying component model. There-
fore, a common component model needs to be built in order to
promote interoperability between building blocks supplied by
different manufacturers [16] and raise acceptance among EUPs
by guaranteeing that users can successfully build more complex
general-purpose RIAs than they can now [17].

The challenge, then, is to come up with an emerging web
end-user component model [18] that covers the functionalities of
a well-known set of existing tools, exploits their strengths and,
whenever possible, reduces their weaknesses, encouraging EUPs
to create and/or customize their own software [19]. This paper
studies a representative set of existing tools, which were selected
as being the most commonly used and successful tools in recent
years, analyses the component models underlying the RIAs created
using each tool and defines and formalizes in description logic
a component model that subsumes the RIA models by merging
their functionalities and strengths and incorporating EUD (end-
user development) success factors. A WEUD tool that instantiates
this model has been tested on real EUPs and found to more
effectively scale up to increasingly complex problems than today’s
EUD tools. We designed this tool, called EzZWeb [20], along with
other partners under the auspices of a Networked European
Software and Service Initiative (NESSI) strategic research project.
EzWeb is now being used in two European Union 7th Framework
Programme projects in which we are participating: 4CaaSt [21]
(building the future Platform as a Service) as part of its mashup-as-
a-service solution and FI-WARE [22] (building the Future Internet
core platform) as part of its applications and services ecosystem
and delivery framework’s generic enablers for EUPs to build
application mashups.

The remainder of the paper is structured as follows. Section 2
presents related work and analyses the principal WEUD tools
and the component models governing the end-user solutions that
they can each build. Section 3 presents a set of target features
for an end-user oriented component model and presents our
WEUD component model that combines the strengths of the other
models with EUD success factors that we have analysed during

our research. This model has been mathematically formalized in
Section 4 using formal logic to demonstrate that it is consistent
and is instantiated by the models produced by the analysed WEUD
tools. Section 5 describes the use of an automatic reasoning tool
to check whether the component model generated by each tool
described in Section 2 is a valid instance of the global model
reported in Section 3. Section 6 presents the results of a study
that we conducted to test whether EzZWeb, which generates RIAs
that conform to the proposed component model, achieves better
results than other WEUD tools, which generate RIAs that conform
to other models. Section 7 addresses the EUD dilemma of whether
it is better to define generic or domain-specific EUD tools. Finally,
Section 8 concludes this paper and presents a brief outline of future
work.

2. Related work: existing solutions for end-user development

Software suppliers are in the process of converting their
products into web services (an approach termed Software as
a Service, SaaS), and all sorts of software solutions are readily
available in the shape of services scattered over the Internet [23].
These approaches target end users that are generally unfamiliar
with the details of the technology used to implement services.
Users should now be just as able to use these services to their
own advantage as they used to be able to use commercial software
products in the past [24]. There are compilations of available
services, together with examples, guidelines and success stories
in service use, including the Programmable Web repository [25].
Programming knowledge, knowledge of SOAP, WSDL, BPEL, etc., is
required to use these resources [26]. This breach between the high
availability of web resources and the low prospects of their use by
EUPs has led many large software enterprises to create mashup
development environments targeting EUPs like Chrome WS and
its Developer Tools, Yahoo! Pipes and Dapper, Microsoft Popfly,
Kapow Platform, JackBe, AMICO, Marmite or EzZWeb. They all share
the goal of enabling EUPs to develop a composite web application
that solves their particular problem.

The major problem with these tools is that EUPs are often
unable to translate their particular requirements into a specific
software product [1,17], because each tool focuses on achieving a
particular solution type that does not necessarily meet user needs.
For example, Yahoo! Pipes creates a correctly filtered data list feed,
Kapow Platform creates an execution flow based on pre-existing
interlinked web portals, and so on. Users who require a more
complex RIA or need to solve a problem type other than for which
the tool was designed will be disappointed.

Our working hypothesis is that the component models control-
ling the different WEUD tool solutions are not general enough to be
able to create more complex general-purpose RIAs. Additionally,
the tools do not match the way in which EUPs conceive their solu-
tion; nor do they offer a natural development process for end-user
characteristics and needs. This hypothesis is based on the study of
many related papers focusing on the EUD field and applicable to
WEUD, which are described below.

End-user development or EUD is a term first proposed by
European researchers ten years ago at an international symposium
held in Bonn, Germany. It has attracted a lot of scientific interest
since the first biannual International Symposium on End-User
Development (IS-EUD) focusing on this domain was held in 2007.
Four top-level meetings have been organized since then. The main
topic of these conferences is how to empower EUPs to develop and
adapt systems themselves.

These symposiums, together with other international con-
gresses, have promoted several lines of EUD-related investigation
akin to the research reported in this paper: (1) attempts at sim-
ple programming languages or environments focused on a partic-
ular domain, such as EnglishMash (an end user-oriented language

Download English Version:

https://daneshyari.com/en/article/424519

Download Persian Version:

https://daneshyari.com/article/424519

Daneshyari.com

https://daneshyari.com/en/article/424519
https://daneshyari.com/article/424519
https://daneshyari.com

