Future Generation Computer Systems 54 (2016) 206-218

Contents lists available at ScienceDirect

FiBICIS!

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs =

Workflow performance improvement using model-based scheduling

over multiple clusters and clouds”

Ketan Maheshwari®*, Eun-Sung Jung?, Jiayuan MengP, Vitali Morozov®,

Venkatram Vishwanath?, Rajkumar Kettimuthu?®

—
@ CrossMark

b

@ Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
b Jeadership Computing Facility Division, Argonne National Laboratory, Argonne, IL, 60439, USA

ARTICLE INFO

Article history:

Received 16 October 2014
Received in revised form

20 March 2015

Accepted 23 March 2015
Available online 31 March 2015

ABSTRACT

Keywords:
System modeling
Workflow
Optimization
Swift

Clouds

In recent years, a variety of computational sites and resources have emerged, and users often have access
to multiple resources that are distributed. These sites are heterogeneous in nature and performance of
different tasks in a workflow varies from one site to another. Additionally, users typically have a limited
resource allocation at each site capped by administrative policies. In such cases, judicious scheduling
strategy is required in order to map tasks in the workflow to resources so that the workload is balanced
among sites and the overhead is minimized in data transfer. Most existing systems either run the entire
workflow in a single site or use naive approaches to distribute the tasks across sites or leave it to the
user to optimize the allocation of tasks to distributed resources. This results in a significant loss in
productivity. We propose a multi-site workflow scheduling technique that uses performance models
to predict the execution time on resources and dynamic probes to identify the achievable network
throughput between sites. We evaluate our approach using real world applications using the Swift parallel
and distributed execution framework. We use two distinct computational environments-geographically
distributed multiple clusters and multiple clouds. We show that our approach improves the resource

utilization and reduces execution time when compared to the default schedule.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A significant proliferation of the cloud computing paradigm is
seen in recent years. Many independent organizations have started
deploying their own clouds and are offering users to use these
clouds to run their applications. Modern applications often involve
repetitive communication-, data-, memory- or compute-intensive
tasks. These applications are often programmed as workflows in
order to improve productivity, and are deployed over remote com-
putational sites such as clouds. Given the increasing prevalence of

* The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (“Argonne”). The US Government retains
for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative works, distribute
copies to the public, and perform publicly and display publicly, by or on behalf of
the Government.

* Corresponding author.

E-mail addresses: ketan@anl.gov (K. Maheshwari), esjung@mcs.anl.gov
(E.-S. Jung), meng.jiayuan@gmail.com (J. Meng), morozov@anl.gov (V. Morozov),
venkatv@mcs.anl.gov (V. Vishwanath), kettimut@mcs.anl.gov (R. Kettimuthu).

http://dx.doi.org/10.1016/j.future.2015.03.017
0167-739X/© 2015 Elsevier B.V. All rights reserved.

computation, these sites have been significantly grown in num-
ber and size and have diversified in terms of their underlying ar-
chitecture. They vary widely in system characteristics including
raw compute power, per-node memory, file system throughput,
and performance of the network. With such heterogeneity, differ-
ent tasks within the same workflow may perform better at differ-
ent sites. Such observation is also true for multiple clouds. In the
latter case, we now have systems where larger memory footprint
nodes are interconnected with compute intensive nodes via a high-
performance interconnect. However, the emerging clouds have al-
tered the course of computational models in the recent years which
must be taken into account to exploit them efficiently. In summary,
the existing computational models are still not well-aligned with
the cloud model of computation.

In addition to the resource heterogeneity, users confront logis-
tical constraints in using these systems including allocation time
and software compatibility. Users often subscribe to a multitude of
clouds, spanning geographical regions, connected through various
types of networks. It is often desired to deploy an application over
multiple sites in order to best utilize the resources collectively.

The resource allocation at each site may be limited by the sys-
tem administrators and the system configuration may be suited for


http://dx.doi.org/10.1016/j.future.2015.03.017
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.03.017&domain=pdf
mailto:ketan@anl.gov
mailto:esjung@mcs.anl.gov
mailto:meng.jiayuan@gmail.com
mailto:morozov@anl.gov
mailto:venkatv@mcs.anl.gov
mailto:kettimut@mcs.anl.gov
http://dx.doi.org/10.1016/j.future.2015.03.017

K. Maheshwari et al. / Future Generation Computer Systems 54 (2016) 206-218 207

(=}
Workflow script Develop Workflow ]— 2
<}
-
. - =
Characterization =
Swift-. v
translator

Workflow skeleton SKOPE extension
for workflow models z
m 2
&8
g
Block Skeleton Tree (o
. =)
| g
=
Data movement analysis Job Graph | 2
Computation modeling Generation %
o

Job Graph
I
Scheduler
Resource Graph
¥
Optimized Multi-site Schedule | Swift Workflow
xecution Engine
Efficient Multi-site

Workflow Execution

Fig. 1. A Conceptual framework for multi-site workflow scheduling.

some tasks but not others. Such resource-task affinity constraints
must be taken into account while scheduling these workflows.
Given these constraints and the dynamic nature of the network
connecting these sites, it is non-trivial to compute a schedule that
will optimally utilize the resources across sites to achieve the best
time-to-solution. An ideal scenario from a user’s perspective is:

1. Construct a workflow [1].

2. Provide the list of resources.

3. Execute the workflow by spreading the tasks to distributed
resources (provided by the user in the previous step) without
any intervention from the user.

This work tackles the aforementioned step 3. In particular, our
work addresses the following key challenge:

Efficiently schedule and run data and compute-intensive work-
flows over multiple, heterogeneous, and geographically dispersed
computational sites.

We use the Swift framework [2] for workflow execution, SKOPE
framework [3] for workflow performance modeling, and a network
scheduling algorithm for optimizing mapping between tasks and
resources. A scheme of our framework with steps and their inter-
connections is shown in Fig. 1. The framework takes the workflow
description encoded as a Swift script and profiles different tasks in
the workflow on available resources to generate a workflow skele-
ton in the format required by SKOPE (see Section 3 for details). Us-
ing the workflow skeleton, SKOPE builds analytical models about
the data transfers between tasks, and empirical models about per-
formance scalability of tasks. SKOPE then constructs a job graph
describing the estimated computation and data transfer according
to the models. The job graph is used as inputs to the scheduling
algorithm, which generates an optimized schedule by taking into
account the performance scalability of tasks and network condi-
tion between the relevant sites. Eventually, the Swift framework
executes the workflow using the recommended schedule.

Although considerable work has been done in the past on sci-
entific workflow management systems [4-8] and metascheduling
systems [9-11], optimizing the execution of workflows across het-
erogeneous resources at multiple geographically distributed sites
has not received much attention. This is due in part to the lack of
access to multiple independent resources and in part to the lack

of workflow enactment capabilities. Most metascheduling systems
run the entire application or workflow at a single site. Systems such
as Swift enables the execution of various tasks of a workflow at
different sites but they do not have sophisticated scheduling al-
gorithms to optimize the execution of workflow across different
sites. A good scheduling algorithm must take into account not only
the heterogeneous nature of the compute infrastructure at various
sites but also the network connectivity and load between the com-
putational sites and the data source(s) and sink(s). Our goal is to
develop better schedules for workflows across geographically dis-
tributed resources.
Our specific contributions in this work is as follows:

o Development of the notion of workflow skeletons framework to
capture, explore, analyze and model empirical workflow behavior
with regard to dynamics of computation and data movement.

e Analgorithm to construct an optimized schedule, according to the
modeled workflow behavior.

e Integration of the workflow skeleton and the scheduling algorithm
into a deployment system.

e Demonstration of the effectiveness of our approach over two
distinct distributed environments: a collection of traditional
clusters and multiple clouds. We use the Amazon AWS, the
Google Compute Engine and the Microsoft Azure cloud platforms
in this work.

The remainder of the paper is organized as follows. Section 2
presents an overview of Swift, a workflow expression and exe-
cution framework; typical scheduling mechanisms; and SKOPE, a
workload modeling framework. Section 3 presents our optimized
scheduling technique. Section 4 describes our experimental setup.
Section 5 presents an evaluation of the proposed approach using
real scientific workflows over multiple sites with distinct charac-
teristics. Section 6 discusses related works. Conclusions are given
in Section 7.

2. Background

We introduce parallel workflow scripting, resource scheduling,
and workload behavior modeling techniques in this section, which
forms the basis of our work. The following terminology is used.
A workflow is a process that involves the execution of many
programs. The invocation of an individual program is referred to
as a task. These tasks may be dependent on each other or can
run in parallel. Tasks are dispatched to various sites in groups of
scheduling units, or jobs. Jobs define the granularity in which the
schedule maps tasks to resources. A job consists of one or multiple
tasks that correspond to the same program but different input data.

2.1. Swift: parallel workflow scripting

Swift is a parallel workflow scripting language for execution
of ordinary programs [12]. The Swift runtime contains a powerful
platform for running user programs on a broad range of compu-
tational infrastructures, such as clouds, grids, clusters, and super-
computers out of the box. A user can define an array of files, and
use foreach loops to create a large number of implicitly parallel
tasks. Swift will then analyze the script and execute tasks based on
their dataflow; a task is executed only after any of its dependent
tasks finish.

Applications encoded as Swift scripts have been shown to
execute on multiple computational sites (clusters, clouds, super-
computers) via Swift coasters [13,12,14] mechanism which imple-
ments the pilot jobs paradigm. The pilot job paradigm dispatches
a pilot task to each of the sites and measures the task completion
rate. The task completion rate for the corresponding task-site com-
bination then serves as an indicator to increase or decrease the



Download English Version:

https://daneshyari.com/en/article/424533

Download Persian Version:

https://daneshyari.com/article/424533

Daneshyari.com


https://daneshyari.com/en/article/424533
https://daneshyari.com/article/424533
https://daneshyari.com

