
Future Generation Computer Systems 54 (2016) 247–259

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Fault-tolerant Service Level Agreement lifecycle management in
clouds using actor system
Kuan Lu a,b,∗, Ramin Yahyapour a,b, Philipp Wieder a, Edwin Yaqub a,b, Monir Abdullah a,d,
Bernd Schloer a, Constantinos Kotsokalis c

a Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen, Germany
b The University of Göttingen, Germany
c AfterSearch P.C., Greece
d Thamar University, Yemen

h i g h l i g h t s

• We elaborate a utility architecture that optimizes resource deployment.
• We provide a mechanism for optimized SLA negotiation.
• Using Actor system as basis, the entire SLA management can be efficiently parallelized.
• We separate the agreement’s fault-tolerance strategies into multiple autonomous layers.
• A realistic approach for the automated management of the complete SLA lifecycle.

a r t i c l e i n f o

Article history:
Received 30 September 2014
Received in revised form
6 March 2015
Accepted 19 March 2015
Available online 1 April 2015

Keywords:
Service Level Agreements lifecycle
Cloud
Actor system

a b s t r a c t

Automated Service Level Agreements (SLAs) have been proposed for cloud services as contracts used
to record the rights and obligations of service providers and their customers. Automation refers to the
electronic formalized representation of SLAs and themanagement of their lifecycle by autonomous agents.
Most recently, SLA automated management is becoming increasingly of importance. In previous work,
we have elaborated a utility architecture that optimizes resource deployment according to business
policies, as well as a mechanism for optimization in SLA negotiation. We take all that a step further
with the application of actor systems as an appropriate theoretical model for fine-grained, yet simplified
and practical, monitoring of massive sets of SLAs. We show that this is a realistic approach for the
automated management of the complete SLA lifecycle, including negotiation and provisioning, but focus
on monitoring as the driver of contemporary scalability requirements. Our proposed work separates
the agreement’s fault-tolerance concerns and strategies into multiple autonomous layers that can be
hierarchically combined into an intuitive, parallelized, effective and efficient management structure.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Contemporary IT service management (ITSM) expects service
level to be managed alongside functional service properties. This
requires that arrangements are in place with internal IT support

∗ Corresponding author at: Gesellschaft für wissenschaftliche Datenverarbeitung
mbH Göttingen, Germany. Tel.: +49 551 3920427; fax: +49 551 2012150.

E-mail addresses: kuan.lu@gwdg.de (K. Lu), ramin.yahyapour@gwdg.de
(R. Yahyapour), philipp.wieder@gwdg.de (P. Wieder), edwin.yaqub@gwdg.de
(E. Yaqub), monir.kaid@gwdg.de (M. Abdullah), bernd.schloer@gwdg.de
(B. Schloer), costas@aftersear.ch (C. Kotsokalis).

providers and external suppliers in the form of Operational Level
Agreements (OLAs) and Underpinning Contracts (UCs), respec-
tively [1]. More recently, automated Service Level Agreements
(SLAs) have been proposed as a means to establish a common un-
derstanding of expectations and obligations of service providers
and their customers. Specifically, automation refers to the elec-
tronic formalized representation of SLAs and the management of
their lifecycle by autonomous agents. Such proposals have been
linked particularly to cloud services.

Previously, we have elaborated a utility architecture that op-
timizes resource deployment according to business policies and
a mechanism for optimized SLA negotiation [2]. In this work, we
take all that a step further with the application of actor systems

http://dx.doi.org/10.1016/j.future.2015.03.016
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.03.016
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.03.016&domain=pdf
mailto:kuan.lu@gwdg.de
mailto:ramin.yahyapour@gwdg.de
mailto:philipp.wieder@gwdg.de
mailto:edwin.yaqub@gwdg.de
mailto:monir.kaid@gwdg.de
mailto:bernd.schloer@gwdg.de
mailto:costas@aftersear.ch
http://dx.doi.org/10.1016/j.future.2015.03.016


248 K. Lu et al. / Future Generation Computer Systems 54 (2016) 247–259

Fig. 1. Evolution of SLA lifecycle management from three steps to six steps. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

as an appropriate theoretical model for fine-grained, yet simpli-
fied and practical monitoring of massive sets of SLAs. Using actor
system as an implementation basis, the whole SLA management
can be efficiently parallelized. In this work, we are using the actor
system in Akka framework [3] for JVM-based actors. Comparing to
other event-driven programming languages such as Esper [4] and
Storm [5], actor systems build hierarchies of actors using strong
parent–child relationships to achieve fault-tolerance. In this set-
ting, each actormay have one ormore child-actors that are respon-
sible for their own specific functionality. When failure occurs in
one of the child-actors, the failure will be propagated upwards un-
til it is handled by predefined solutions [6]. Our approach separates
the agreement’s fault-tolerance concerns and strategies, i.e. re-
source (re)-scheduling, outsourcing, (re)-negotiation, intomultiple
autonomous layers that can be hierarchically combined into an in-
tuitive, parallelized, effective and efficient management structure.
We show that this is a realistic approach for the automated man-
agement of the complete SLA lifecycle, including negotiation and
provisioning, but also focus onmonitoring as the driver of contem-
porary scalability requirements.

The remainder of this paper is structured as follows. In Sec-
tion 2, the derivation and the classification of SLA lifecycle man-
agement will be discussed. In Section 3, we will discuss prior art.
Then the model of the problem is given in Section 4. In Section 5,
a formal model of SLA negotiation scenario is provided. Section 6
gives a description of a formalmodel of SLAmonitoring scenario. In
Section 7, we validate our proposal via discrete event simulations.
Finally, we conclude the paper in Section 8.

2. SLA lifecycle management

SLAs relate by their very nature to different phases of a service
lifecycle. Therefore, it is of fundamental importance to agree on a
common reference model for such a service lifecycle which details
the various phases, their stakeholders and their expected outputs
in a commonway without compromising the general design space
for SLA management architecture.

The overall lifecycle model has been influenced to a dramatic
degree and is broadly in-line with the ITIL framework [7]. In gen-
eral, the service lifecycle management considers six main phases,
which are: design and development, service offering, service ne-
gotiation, service provisioning, service operations and service de-
commissioning. SLAs also play a central role in the service lifecycle,
because by capturing service expectations and entity responsibili-
ties they drive both engineering decisions at conception level (dur-
ing for example service design) and operational decisions (during
service usage and delivery) [8].

Although there is no standard definition, in recent years,
various projects, research activities and companies provide the
foundation for the state-of-the-art in SLA lifecycle management.
For instance, Ron et al. define the SLA lifecycle in three phases [9].
Later on, more detailed classifications are proposed and outlined
individually by SLA@SOI project [10], by Sun Microsystems [11]
and by the TeleManagement Forum [12]. In general, SLA lifecycle
management consists of three phases with corresponding color on

top of the Fig. 1, namely creation (red), operation (orange) and
removal phases (blue), each of which can be further expanded
to sub-phases with the same color. The SLA creation includes
three sub-steps, i.e. discover service provider, SLA definition
and SLA establishment. Once service providers are discovered,
customers have to be aware of the detailed capacity of the
service providers. Therefore, the service providers describe and
define their services properly and deliver the definition of their
services to the customers. Then, the customers further establish
the agreement(s) with one or more service providers based on the
service definition through a process of SLA negotiation.

3. Related works

3.1. Service fault-tolerant monitoring

Currently, there are various kinds of service fault-tolerantmon-
itoring tools, such as CloudWatch [13] from Amazon that pro-
vides monitoring for AWS cloud resources and the applications.
Developers or system administrators can use it to collect and track
metrics, gain insight and react immediately to keep their applica-
tions and businesses running smoothly. Likewise, by configuring
Nagios [14], the entire IT infrastructure components could bemon-
itored, traced, including various system metrics, applications, ser-
vices and so on. In the end, Nagios can send alerts to administrators
when critical infrastructure components fail. Similarly, through
OpenTSDB [15], users are able to fetch the historical data of many
system metrics, such as CPU, memory and hard disk utilization.
However, all above tools are only designed for reporting a histor-
ical record of outages or failures and the failures however have to
be resolved manually. Eventually, in any business that depends on
computers, creating an infrastructure with clear procedures and
preventive maintenance can reduce the likelihood of failures. In
other words, how does the system understand the different types
of possible failures and respond to the potential violation alarm.
Therefore, recovery from failures must be planned and an au-
tonomous service violation self-heal system is of paramount im-
portance [16].

Some related fault-tolerant SLAmanagement frameworks, such
as [17],which presents a dependableQoSmonitoring systemcalled
‘‘QoSMONaaS’’, which relies on the as a Service paradigm, and can
thus be made available to virtually all cloud users in a seamless
way; [18] introduced a framework ‘‘SLAMonADA’’ for monitor-
ing and explaining violations of WS-agreement-compliant docu-
ments; and [19] introduced an SLA-aware service virtualization
architecture that provides non-functional guarantees in the form
of SLAs and consists of a three layered infrastructure including
agreement negotiation, service brokering and on demand deploy-
ment. However, they all only focused on SLAmonitoring system to
detect the SLA violations and corresponding penalty cost without
considering the reaction process how to avoid the SLA violations.
Furthermore, many works about SLA monitoring self-healing and
autonomous adaption emerge as the times require, such as
[20–26]. In detail, works [20,21], engaged the monitoring, anal-
ysis, planning and execution cycle to react against violations in



Download English Version:

https://daneshyari.com/en/article/424536

Download Persian Version:

https://daneshyari.com/article/424536

Daneshyari.com

https://daneshyari.com/en/article/424536
https://daneshyari.com/article/424536
https://daneshyari.com

