
Future Generation Computer Systems 54 (2016) 469–477

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Time Donating Barrier for efficient task scheduling in competitive
multicore systems
Song Wu ∗, Yaqiong Peng, Hai Jin
Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology, Huazhong University of
Science and Technology, Wuhan, 430074, China

h i g h l i g h t s

• We present Tidon, a time donating barrier synchronization mechanism.
• Tidon leverages waiting threads to accelerate barrier in competitive environments.
• Tidon alleviates the performance degradation of barrier-intensive applications.
• Tidonmaintains good fairness among co-running applications.
• We implement a prototype of Tidon and show its efficiency by experiments.

a r t i c l e i n f o

Article history:
Received 9 May 2014
Received in revised form
12 December 2014
Accepted 14 April 2015
Available online 3 June 2015

Keywords:
Cloud
Synchronization
Competitive
Scheduling

a b s t r a c t

Nowadays, co-locating multithreaded applications on a multicore system has increasingly become a
common case in cloud data centers, where multiple threads generally compete for computing resources.
These competitive environments may suffer problems of system throughput and fairness caused by
barrier operations in multithreaded applications. This is because most implementations of the barrier
synchronization are based on the spin-then-block mechanism in which spinning–waiting threads
probably waste computing resources and relinquish cores to other co-running applications after they
are blocked. This paper attempts to find a new and intuitive way to improve the efficiency of barrier in
competitive environments, and answer the question: Can we leverage the timeslices of waiting threads
to accelerate barrier operations?

Targeting this question, we propose a novel barrier synchronization mechanism named Tidon (Time
Donating Barrier). The basic idea of Tidon is to donate the timeslices ofwaiting threads to their preempted,
laggard siblings in order to accelerate barrier operations, different from traditional static spinning
and blocking. We implement Tidon based on the GNU OpenMP runtime library (libgomp) and Linux
kernel with new, lightweight system calls. Our evaluation with various sets of co-running applications
demonstrates that the advantages of Tidon include (1) alleviating the performance degradation of barrier-
intensive applications (e.g. improving the performance by up to a factor of 17.9 and 2.3 compared to
the default barrier implementation of OpenMP in Completely Fair Scheduler and Balance Scheduling,
respectively) while not hurting or even improving the performance of non-barrier-intensive applications,
and (2) maintaining good fairness among co-running applications (e.g. improving the fairness by up to a
factor of 19.8 and 1.7 compared to the default barrier implementation of OpenMP in Completely Fair
Scheduler and Balance Scheduling, respectively).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, cloud data centers generally consist of multicore
machines. As the computing resources and memory capacity of

∗ Corresponding author.
E-mail address:wusong@hust.edu.cn (S. Wu).

multicore machines are abundant, the cloud providers tend to
co-locate multiple multithreaded applications on a multicore sys-
tem, in order to maximize resource efficiency. Lots of multi-
threaded applications are implemented in the Bulk-Synchronous
single-program, multiple-data (SPMD) programming model that
has a pattern of computation phases and communicationwith bar-
rier synchronization [1–4]. Therefore, the performance of multi-
threaded applications highly depends on barrier operations, which

http://dx.doi.org/10.1016/j.future.2015.04.005
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.04.005
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.04.005&domain=pdf
mailto:wusong@hust.edu.cn
http://dx.doi.org/10.1016/j.future.2015.04.005


470 S. Wu et al. / Future Generation Computer Systems 54 (2016) 469–477

generally use the state-of-the-art spin-then-block mechanism
such as Linux futex and the barrier synchronization implemented
by GNU OpenMP [5,6].

Unfortunately, schedulers of most mainstream operating sys-
tems are unaware of synchronization operations within multi-
threaded applications in order tomaximize overall CPU utilization,
and thus the barrier latency could be significantly extended due to
preemptions of laggard threads (this paper calls threads that have
not reached the barrier as laggard threads) in competitive environ-
ments. During the long barrier latency, spinning–waiting threads
probably waste computing resources and relinquish cores to other
co-running applications after they are blocked. This may signifi-
cantly aggravate both the system throughput and fairness.

To improve the efficiency of synchronization in competitive
environments, co-scheduling [7,3] is a representative approach
which allows thread siblings (this paper calls threads from the
same application as siblings for each other) to be synchronously
scheduled and de-scheduled. Despite its effectiveness in minimiz-
ing barrier latency, co-scheduling can cause CPU fragmentation
in most realistic situations, leading to deployment impediment
[2,8,9]. Balance scheduling is a probabilistic co-scheduling, which
dynamically assigns thread siblings to different cores and can per-
form similarly or better than co-scheduling for the performance of
applicationswithout the drawbacks of co-scheduling [8]. However,
we show that when the system load is imbalanced, the progress of
threads on overloaded cores may be much behind the progress of
threads on underloaded cores, and thus the barrier latency may be
still long.

This paper, instead of working on underlying scheduling poli-
cies, proposes a new and intuitive way to reduce barrier latency
by making good use of waiting threads. We present a novel barrier
synchronization mechanism named Tidon (Time donating barrier)
on the top of time-sharing scheduling policy in mainstream oper-
ating systems. The basic idea of Tidon is to donate the timeslices of
waiting threads to their preempted, laggard siblings. In this way,
waiting threads can directly contribute to the completion of barri-
ers.

In summary, this paper makes the following contributions:
• We analyze barrier latency in competitive multicore environ-

ments, and its impact on system throughput and fairness with
different scheduling policies.

• We propose a barrier mechanism named Tidon, which donates
the timeslices of waiting threads to their preempted, laggard
siblings in order to accelerate barrier operations, so as to
reduce the execution time of multithreaded applications in
competitive multicore environments.

• We implement Tidon based on OpenMP and Linux kernel; the
modifications to OpenMP and Linux kernel are lightweight.
Evaluation with various sets of co-running applications shows
that compared to other alternative policies, Tidon can (1) alle-
viate the performance degradation of barrier-intensive applica-
tions while not hurting or even improving the performance of
non-barrier-intensive applications, and (2) maintain good fair-
ness among co-running applications.

The rest of the paper is organized as follows. The next section
presents further background on our definitive problem and a the-
oretical analysis. Sections 3 and 4 describe the design and imple-
mentation of Tidon, respectively. Section 5 provides performance
evaluation. Section 6 overviews the related work, and Section 7
concludes the paper.

2. Background and problem analysis

In this section, we first discuss the basics of the barrier synchro-
nization in more detail, and then introduce scheduling policies in
competitive environments. Finally, we look into the challenges of
the barrier synchronization in competitive environments.

2.1. Barrier basics

A barrier is a synchronization mechanism that ensures no
threads can advance beyond a particular point in a computation
until all threads have reached that point. Barriers are widely
used to synchronize threads in multithreaded applications that
exploit fork-join and SPMD parallelism. Barriers can also be used
to separate sections of parallel code by parallelizing compilers.

Algorithm 1 The Spin-then-Block Barrier Algorithm
Input: The current thread T
Output: T returns from the current barrier or is blocked
1: T indicates its arrival by executing a critical section;
2: pollcount = 0;
3: repeat
4: check the shared completion flag;
5: if all siblings have entered into the barrier then
6: return
7: else
8: pollcount++;
9: end if

10: until pollcount = Threshold Times
11: T is blocked;

Algorithm 1 shows the common barrier algorithm used bymost
implementations of barrier operations such as pthread and GNU
OpenMP et al. The algorithm employs a central counter, and each
thread increases the counter when it arrives at the barrier. Each
thread first spins on a single, shared completion flag in order to
respond to the low-latency barrier quickly and avoid unnecessary
context-switches. When the spinning times reach the predefined
threshold, the thread is blocked.

2.2. Scheduling policies in competitive environments

Abundant computing resources and memory capacity of mul-
ticore machines offer a powerful environment for simultaneously
executing multiple multithreaded applications. Most mainstream
operating systems, such as Linux, adopt independent time-sharing
scheduling policy. With this policy, threads of the same multi-
threaded application are asynchronously scheduled to cores in
competitive environments, in order to maximize overall CPU uti-
lization while maintaining fairness in providing the CPU time
to threads. Another scheduling policy under competitive envi-
ronments is to simultaneously schedule threads of each running
application to cores (co-scheduling [7]). It looks like that the
multicore system is dedicated to each application during the
scheduling quanta of the corresponding application. However, this
approach suffers from CPU fragmentation and execution delay,
leading to deployment impediment [2,8,9]. As an alternative so-
lution to CPU fragmentation problem, balance scheduling (proba-
bilistic co-scheduling) simply balances thread siblings on different
cores instead of forcing the thread siblings to be scheduled simul-
taneously [8]. As a result, balance scheduling performs similarly or
better than co-scheduling for the performance of applications in
competitive environments [8].

In the following subsection, we will theoretically analyze
barrier latency in competitive environments, and its impact on
system throughput and fairness with the above three scheduling
policies, respectively.

2.3. Problem analysis

For the convenience of our analysis, we first define some
variables as follows:
• P: the total number of cores in the system.
• m: the total number of threads in the system.
• J: A thread.



Download English Version:

https://daneshyari.com/en/article/424557

Download Persian Version:

https://daneshyari.com/article/424557

Daneshyari.com

https://daneshyari.com/en/article/424557
https://daneshyari.com/article/424557
https://daneshyari.com

