
Future Generation Computer Systems 54 (2016) 490–500

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Efficient sparse matrix–vector multiplication using cache oblivious
extension quadtree storage format
Jilin Zhang a,b,c,∗, Jian Wan a,b,c, Fangfang Li a,b,c, Jie Mao d, Li Zhuang a,b,c, Junfeng Yuan a,b,c,
Enyi Liu a,b,c, Zhuoer Yu a,b,c

a School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China
b Key Laboratory of Complex Systems Modeling and Simulation, Ministry of Education, China
c Zhejiang Provincial Engineering Center on Media Data Cloud Processing and Analysis, Hangzhou, 310018, China
d School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China

h i g h l i g h t s

• A cache oblivious extension quadtree storage structure (COEQT ) is proposed.
• Present the converting algorithm from CSR storage format to the COEQT storage format.
• Implement the sparse matrix–vector multiplication algorithm based on the COEQT .
• Optimize the performance of the implemented algorithm through manual vectorization.
• Implement the parallel sparse matrix–vector multiplication in distributed system.

a r t i c l e i n f o

Article history:
Received 6 August 2014
Received in revised form
12 February 2015
Accepted 7 March 2015
Available online 29 June 2015

Keywords:
Sparse matrix–vector multiplication
Sparse matrix storage
Data locality
Cache oblivious
Extension quadtree
Distributed parallelism

a b s t r a c t

In this paper, we elaborate on improving the sparse matrix storage format to optimize the data locality of
sparsematrix–vector multiplication (SpMVM) algorithm, and its parallel performance. First of all, we pro-
pose a cache oblivious extension quadtree storage structure (COEQT ), in which the sparse matrix is recur-
sively divided into sub-regions that canwell fit into cache to improve thedata locality. Later on,wepresent
a COEQT based SpMVM algorithm and optimize its performance through manual vectorization. With this
storage format, the original SpMVM is divided into computations of relatively independent smallmatrices.
In addition, this region-based computation framework is also suitable for high performance computing
in distributed computing environment. So, we finally present a parallel SpMVM algorithm based on the
proposed COEQT . Extensive and comprehensive experiments show that the sparse matrix–vector multi-
plication using the COEQT storage format achieves on average 1.1–1.5× speedup compared with CSR for-
mat and further higher performance through instruction level optimization techniques. The experiment
in Lenovo Deepcomp 7000 demonstrates that this method achieves on average 1.63× speedup compared
with the Intel Cluster Math Kernel Library implementation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Large-scale sparsematrix plays an important role in the discrete
physical process of many scientific problems, such as representing
the interaction between elements in the finite element analysis,
describing the graph and transforming the map by sparse matrix

∗ Corresponding author at: School of Computer Science and Technology,
Hangzhou Dianzi University, Hangzhou, 310018, China. Tel.: +86 15258801227.

E-mail address: jilin.zhang@hdu.edu.cn (J. Zhang).

operations, solving partial differential equations in fluid dynam-
ics, etc. Therefore, large-scale sparse matrix–vector multiplication
(SpMVM) is thought as one of the most important scientific and
engineering computing methods in the next decade [1]. However,
affected by some factors [2] (e.g., the storage format, sparse ma-
trix pattern), SpMVM algorithm is generally inefficient. Thus, the
premise of researching SpMVM algorithm is the research of sparse
matrix storage format. The existing common storage formats of
sparse matrix are as follows.

XY coordinate storage format (COO). In this format, the row and col-
umn coordinates of a nonzero element are stored when its value

http://dx.doi.org/10.1016/j.future.2015.03.005
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.03.005
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.03.005&domain=pdf
mailto:jilin.zhang@hdu.edu.cn
http://dx.doi.org/10.1016/j.future.2015.03.005


J. Zhang et al. / Future Generation Computer Systems 54 (2016) 490–500 491

Fig. 1. The COO storage format for sparse matrix.

is stored. Therefore, it needs three arrays: NZvalue array for the
values of nonzero elements, row array and col array for the row
and column coordinates of nonzero elements, as shown in Fig. 1.
Consider the sparse-vector multiplication y = Annx, in which A
is a sparse matrix of order n with N nonzero elements and x is a
dense vector, then the length of each array is N in the COO stor-
age format. We assume that each element in A occupied SD stor-
age space and each element in row array and col array occupied SI
storage space, then the space overhead of COO is N(SD + 2SI). In
addition, the result vector y are calculated through indirectly ad-
dressing, as the following code: (y[row[i]]+ = NZvalue[i] ∗
x[col[i]](i ∈ [1,N])), during the multiplication. Hence, as for the
large-scale sparse matrix–vector multiplication, indirect address-
ing will cause high cache miss rate and poor execution perfor-
mance. Especially when the matrix is highly sparse, irregular data
accessingwill lead to significant reduction of the execution perfor-
mance.
Compressed sparse row storage format (CSR). In order to reduce the
storage redundant that results from storing the row indices of the
same row in the COO format as shown in the row array in Fig. 1,
a modified storage format—CSR [3,4] which is shown in Fig. 2 was
proposed. CSR format compresses the storage space by storing the
position index of the first nonzero element rather than all nonzero
elements in a row, for which the space overhead is reduced to
N(SD + SI) + (n + 1)SI . Compared with COO, this storage format
can save the storage space to some extent. Moreover, the efficiency
of algorithm using this storage format is higher than the algorithm
using COO, because the indirect addressing is reduced when the
multiplication was calculated. However, CSR does not eliminate ir-
regular data accesses completely. Especially, when there are many
nonzero elements in a certain row, it will lead to high cache miss
rate. Vuduc and Moon pointed out that the efficiency cannot reach
10% of machine peak performance when using CSR in the sparse
matrix multiplication calculation [5].
Quadtree storage format. The high cache miss rate will be caused
when the SpMVM uses existing sparse matrix storage format.
To solve this problem, quadtree storage format was put for-
ward. Through splitting the sparse matrix recursively (see Fig. 3),
quadtree storage format builds a quadtree, as shown in Fig. 4,
rather than three arrays.

As shown in Fig. 4, there are three types of node defined in the
quadtree: intermediate node and two types of leaf node. Interme-
diate nodes are mixed-region nodes (marked as M) that contain
nonzero elements and zero elements and can be decomposed con-
tinually. Leaf nodes are divided into empty-region nodes (marked
as E) and dense-region nodes (marked as D). However, since the
sparsity of the matrix is increasing, there are more empty-field
nodes to be stored. But E nodes contain useless information, result-
ing in storage redundancy. To solve this problem, Simecek came up

Fig. 2. The CSR storage format for the same sparse matrix in Fig. 1.

with an extended quadtree storage format, in which the empty-
region nodes are deleted and the dense-region nodes are divided
into full-region and sparse-region nodes according to the sparsity
of current region. However, this extension quadtree is not that fit
for matrix–vector multiplication due to the large control and stor-
age overhead [6].

To solve the above mentioned problems of existing storage
structures, a lot of novel ideas and methods have been introduced
in recent years. These studies mainly focus on two aspects: one is
reducing the complexity of the algorithm, the other is improving
the efficiency by taking advantage of architectural features. As for
the former aspect, Simecek et al. presented a minimal Quadtree
(MQT ) [7] format to compress the sparse matrices storage space.
MQT stores all the nodes with an array, and each node contains
four flags (i.e., 4 bits only) instead of pointers, which greatly re-
duces the space complexity of the quadtree storage structure. In
the same year, he proposed a large-scale sparsematrix storage for-
mat for massively parallel system, which is capable of minimizing
the space complexity [8]. While, as for the latter aspect, memory
bandwidth limitation is one of themain bottlenecks in the existing
architectures. To solve this problem, [9] designed a CSR based com-
pressed storage format, which reduces the memory bandwidth
demand through compressing the index and value. However, for
large-scale sparsematrix, compression and decompressionwill in-
troduce huge overhead. Feng et al. proposed a segment based Sp-
MVM CUDA algorithm SHEC-Segmented Hybrid ELL + CSR [10].
Nicholas Yzelman and Roose gave strategies for parallel shared-
Memory sparse matrix–vector multiplication [11]. Im et al. [12,13]
and Vuduc et al. [5,14] proposed optimized Cache-Register block
storage data structure and presented auto-tuningmethodology us-
ing architecture features. Buluc et al. [15] presented a storage for-
mat CSB, which improves the CSR storage format and makes it
easy to parallel computing. Yuan et al. analyzed the performance
of these structures in [16]. Sun et al. [17] designed CRSD format,
in which the matrix is divided into three groups and each group
is computed respectively. However, only when the matrix is di-
agonally dominant can this format get good performance. Based
on their work, Williams et al. [18] optimized the method on dif-
ferent multi-core architectures. Kourtis et al. [19,20] improved
the efficiency of matrix–vector multiplication calculation under
the circumstances of multi-threading by optimizing the compres-
sion technology of an array and summarized the characteristics of
the sparse matrix–vector calculation on the popular architecture
nowadays. However, these methods depend highly on the distri-
bution of nonzero elements in the matrix. If the distribution of
nonzero elements is uncertain, in most cases, these methods are
notwell. Although Blelloch et al. [21] presented a hierarchical diag-
onal blocking (HDB) approach, and optimized the division of sub-
tree by separators in graph theory, it is necessary to traverse the



Download English Version:

https://daneshyari.com/en/article/424559

Download Persian Version:

https://daneshyari.com/article/424559

Daneshyari.com

https://daneshyari.com/en/article/424559
https://daneshyari.com/article/424559
https://daneshyari.com

