
Future Generation Computer Systems 53 (2015) 63–76

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Allocating resources for customizable multi-tenant applications in
clouds using dynamic feature placement
Hendrik Moens ∗, Bart Dhoedt, Filip De Turck
Ghent University – iMinds, Department of Information Technology, Gaston Crommenlaan 8/201, B-9050 Gent, Belgium

h i g h l i g h t s

• Wemodel customizable SaaS applications using feature modeling.
• A dynamic, migration-aware management approach is presented.
• Two ILP-based algorithms and a heuristic algorithm are compared.
• The dynamic algorithms reduce migrations and remain within 3% of the optimal cost.

a r t i c l e i n f o

Article history:
Received 5 May 2014
Received in revised form
8 May 2015
Accepted 13 May 2015
Available online 9 June 2015

Keywords:
Cloud resource management
Software product line engineering
Dynamic application placement
Feature placement

a b s t r a c t

Multi-tenancy, where multiple end users make use of the same application instance, is often used in
clouds to reduce hosting costs. A disadvantage of multi-tenancy is however that it makes it difficult to
create customizable applications, as all end users use the same application instance. In this article, we
describe an approach for the development and management of highly customizable multi-tenant cloud
applications. We apply software product line engineering techniques to cloud applications, and use an
approachwhere applications are composed ofmultiple interacting components, referred to as application
features. Using this approach, multiple features can be shared between different applications. Allocating
resources for these feature-based applications is complex, as relations between components must be
taken into account, and is referred to as the feature placement problem.

In this article, we describe dynamic feature placement algorithms that minimize migrations between
subsequent invocations, and evaluate them in dynamic scenarios where applications are added and
removed throughout the evaluation scenario. We find that the developed algorithm achieves a low
cost, while resulting in few resource migrations. In our evaluations, we observe that adding migration-
awareness to the management algorithms reduces the number of instance migrations by more than 77%
and reduces the loadmoved between instances bymore than 96%when compared to a staticmanagement
approach. Despite this reduction in number of migrations, a cost that is on average less than 3%more than
the optimal cost is achieved.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years there has been a growing interest in using cloud
computing as a means of offloading applications and reducing
costs. An efficient way in which costs of cloud deployments may
be reduced is through multi-tenancy. In a traditional model, every
client is provided with a separate application instance. In multi-
tenant environments, however, a single instance can be used by
multiple clients. Every client of the application is referred to as

∗ Corresponding author.
E-mail address: hendrik.moens@intec.ugent.be (H. Moens).

a tenant and is considered to be an organization with its own
end users. The major advantage of this approach is that it makes
it possible to use fewer application instances to provision the
service to each of these tenants, reducing the cost of offering
the service. Additionally, this approach makes it easier to scale
applications, as sudden increases in the number of users results
in smaller increases of the number of required instances. Spikes in
the number of end users of one tenant can also be compensated by
decreasing numbers of end users of other tenants.

Building customizable multi-tenant applications is however
difficult, and it is often hard to make changes that are not just
cosmetic configuration changes. Therefore, multi-tenant applica-
tions are often offered as a take it or leave it package, with
only limited customizability. This approach works well for many

http://dx.doi.org/10.1016/j.future.2015.05.017
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.05.017
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.05.017&domain=pdf
mailto:hendrik.moens@intec.ugent.be
http://dx.doi.org/10.1016/j.future.2015.05.017


64 H. Moens et al. / Future Generation Computer Systems 53 (2015) 63–76

Fig. 1. An illustration of a scenario where the application is offered to end users by
a hierarchy of the three types of tenants: resellers, clients, and client departments.
Resellers can also sell the application to other resellers, and departments may also
be further divided into smaller departments. At every level, different application
customizations may be required.

application types, especially when tenant needs are very similar,
but there are use cases where a very high degree of customizabil-
ity is required. This is the case in various domains, such as for
example document processing, medical communications and
medical information management. These application cases are all
characterized by the fact that the offered platform is used by a rela-
tively small number of large tenants that each have a large number
of end users. Each of these tenantsmay request its own customiza-
tions to the applicationplatform, and asmany tenants are large, it is
difficult to deny these requests. Currently such customizations are
often developed on an ad-hoc basis. This however poses difficulties
concerning the management of these customizations and as sepa-
rate tenants have custom tailored codebases, it becomes impossi-
ble to share resources between end users. This problem becomes
evenmore complexwhen clients are also split up intomultiple de-
partments that each require specific customizations and when the
application platform is offered to other clients using resellers. An
illustration of the various tenant types is shown in Fig. 1.

Using feature modeling [1], this issue can be addressed. Feature
modeling is an approach where the variability of an application is
modeled using a feature model. The customizability of the applica-
tion is represented by a collection of features, a representation of
specific functionality that may or may not be added to the applica-
tion, and their relations. Features can be implemented using aspect
oriented programming [2], as configuration changes, or as custom
code modules. While feature modeling is an interesting approach
for managing the codebase of customizable applications, this still
results in customized application binaries, making it impossible to
usemulti-tenancy in the resulting applications.Wepreviously pro-
posed an approach where applications are separated into multiple
interacting components, effectively making sure every feature is
implemented in its own service [3]. The entire application is then
composed from the various components, thus forming a service
oriented architecture. As every code module is itself multi-tenant,
the advantages of multi-tenancy can be attained.

Splitting applications into multiple components however im-
pacts the performance of the applications, complicating cloud
management. Additionally, the chosen features should be taken
into account by the management system. It may e.g. be cheaper
to use an existing high-performance instance for a tenant that
does not pay for such an instance rather than to allocate a low-
performance instance specifically for this tenant. We previously
addressed resource allocation taking this information into account,
referred to as feature placement, in [4,5], but the approach how-
ever resulted in a static resource allocation, that has to be recom-
puted periodically. In doing so, the number of migrations is not
taken into account, which adversely impacts the performance of

Fig. 2. The dynamic feature placement, its inputs and its function within a
management system.

the systemwhen services aremigrated. Furthermore, adding appli-
cations is relatively expensive and slow as they can only be added
whenever the algorithm is invoked rather than immediately when
they are added.

In this article, we focus on dynamic feature placement algo-
rithms that relocate and reconfigure features when changes occur.
In computing these changes, the previous state of the system is
taken into account, minimizing the number of application changes
and instance migrations. We present both ILP-based algorithms
and a heuristic algorithm, the Dynamic Feature Placement Algo-
rithm (DFPA). Fig. 2 shows the algorithm inputs and how it func-
tions within a cloud management system.

The remainder of this article is structured as follows. In the
next section we discuss related work. Afterwards, in Section 3 we
describe how the system inwhich the feature placement algorithm
is executed is structured, and how feature modeling is used within
the approach. A formal problem representation is presented in
Section 4. In Section 5, we present the DFPA. The evaluation setup
is presented in Section 6, and the algorithms are then evaluated in
Section 7. Finally, we state our conclusions in Section 8.

2. Related work

To manage variability when building applications, Software
Product Line Engineering (SPLE) [6] techniques are used. Instead
of managing multiple codebases for different application variants,
a single codebase is used, and different variants are generated
using SPLE tools. In traditional SPLE applications, the application
configuration is however generally decided at compile-time, mak-
ing it ill-suited for cloud environments. Dynamic SPLE [7] can be
used to configure and reconfigure software variants at runtime,
making it more suited for cloud environments. This makes it pos-
sible to characterize runtime variability and reconfigure applica-
tions at runtime. SPLE has been used in cloud environments [8–10],
but the approaches tend to focus mostly on development, deploy-
ment and configuration.We however focus specifically on runtime
resource allocation for customizable SPLE applications by adding
awareness of application variability to the cloud management al-
gorithms. Similarly, otherwork [11–14] focuses on the design-time
variability of the applications rather than on their runtime man-
agement, the latter being the focus of this article.

In this article, we focus on cloud resource allocation [15] and
design dynamic management algorithms that are aware of appli-
cation customizability. In particular, we focus on extending the



Download English Version:

https://daneshyari.com/en/article/424569

Download Persian Version:

https://daneshyari.com/article/424569

Daneshyari.com

https://daneshyari.com/en/article/424569
https://daneshyari.com/article/424569
https://daneshyari.com

