Future Generation Computer Systems 53 (2015) 90-99

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs =

A hierarchical watchdog mechanism for systemic fault awareness on

distributed systems

Roberto Ammendola?, Andrea Biagionib, Ottorino Frezza®, Francesca Lo CiceroP®,

A
@ CrossMark

b

Alessandro LonardoP®, Pier Stanislao Paolucci®, Davide Rossetti®!, Francesco SimulaP®,

Laura Tosoratto®*, Piero Vicini®

2 INEN Sezione di Roma Tor Vergata, Via della Ricerca Scientifica, 1 -00133 Roma, Italy
b INEN Sezione di Roma, P.le Aldo Moro, 2 -00185 Roma, Italy

HIGHLIGHTS

Our mechanism has no impact on system performance.

We approach fault tolerance for distributed systems from fault detection and awareness.

We propose a HW/SW mechanism based on a mutual watchdog mechanism between Host and NIC.
A double diagnostic message path leads to resilient systemic fault awareness.

Our tool can interface fault reaction/recovery systems to trigger them automatically.

ARTICLE INFO

Article history:

Received 31 July 2013

Received in revised form

7 October 2014

Accepted 28 December 2014
Available online 5 January 2015

ABSTRACT

Keywords:

Distributed architectures

System-level fault tolerance

Dependable and fault-tolerant systems and
networks

Systemic fault tolerance is usually pursued with a number of strategies, like redundancy and checkpoint/
restart; any of them needs to be triggered by safe and fast fault detection. We devised a hardware/software
approach to fault detection that enables a system-level Fault Awareness by implementing a hierarchical
Mutual Watchdog. It relies on an improved high performance Network Interface Card (NIC), implement-
ing an n-dimensional mesh topology and a Service Network. The hierarchical watchdog mechanism is
able to quickly detect faults on each node, as the Host and the high performance NIC guard each other
while every node monitors its own first neighbours in the mesh. Duplicated and distributed Supervisor
Nodes receive communication by means of diagnostic messages routed through either the Service Net-
work or the N-dimensional Network, then assemble a global picture of the system status. In this way our
approach allows achieving a Fault Awareness with no-single-point-of-failure. We describe an implemen-
tation of this hardware/software co-design for our high performance 3D torus NIC, with a focus on how

routed diagnostic messages do not affect the system performances.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Even if always strictly nonzero, chances of faults in a compo-
nent (be it a processor, a memory, a storage unit or a network link)
of an HPC computing system leading to loss or corruption of work
used to be so small that the implementation effort of safety strate-
gies like an explicit checkpointing schedule - to recover from un-
expected halts - or duplicated execution - to rule out corruption
by double checking the results - could be deemed worthy only in
extreme cases.

* Corresponding author.
E-mail address: laura.tosoratto@romal.infn.it (L. Tosoratto).

1 present address: NVIDIA Corp., Santa Clara, CA, United States.

http://dx.doi.org/10.1016/j.future.2014.12.015
0167-739X/© 2015 Elsevier B.V. All rights reserved.

For petascale (and more so for projected exascale) installa-
tions, the situation can change dramatically; for systems assem-
bled with current technology nodes - i.e. off-the-shelf components
that equip the nodes have a Mean Time Between Failures (MTBF)
realistically valued at tens of years — and no other particular pro-
vision, the continuous uptime of the whole system can be as low
as a few hours. This hints to the fact that, for larger systems, fault-
ing components become an inevitable architectural constraint that
implies different strategies and related tradeoffs [1].

For example, redundancy is a well-established approach to fault
tolerance; hardware or software elements are replicated - majority
voting techniques veto out failing replicas - so that a fault does not
immediately tear down a system while waiting to be serviced.

Another widespread practice is rollback/recovery; periodic
committal to storage of application snapshots with restart and


http://dx.doi.org/10.1016/j.future.2014.12.015
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2014.12.015&domain=pdf
mailto:laura.tosoratto@roma1.infn.it
http://dx.doi.org/10.1016/j.future.2014.12.015

R. Ammendola et al. / Future Generation Computer Systems 53 (2015) 90-99 91

eventual rework whenever a fault occurs is a standard fault tol-
erance reactive strategy that can be employed at different system
levels so as to make it more or less automated, fast and user trans-
parent.

An example of a more sophisticated, pro-active strategy is task
migration; when equipped with adequate predictor heuristics able
to parse available sensor logs, the system has chances of preemp-
tively seeing a fledgling unhealthy status and acting to evade a
likely fault, e.g. by snapshotting a task running on one core and
moving it onto another. Clearly, all these techniques have draw-
backs. For example, the frequent and globally consistent check-
points needed for efficient rollback/recovery put a large strain on
storage and network; this can turn them into severe bottlenecks to
global performance and dedicated but expensive solutions - fast
local storage like phase change SSDs - can only partially mitigate
the problem. Because of this, a checkpointing-equipped applica-
tion has to cope with ever diminishing useful work once run on
large number of nodes. An example is given in [2]; under the op-
timistic assumption of perfect weak scaling, only 35% of the actual
runtime of a 168-h (one week) job on a 100k nodes machine ac-
counts for useful work—the remainder is wasted in checkpointing,
restarting and recomputation of work lost since last checkpoint.

On the other hand, effectiveness of any proactive technique re-
lies on accurate fault prediction; this represents a complex and
very active research area of and by itself, encompassing fault mod-
elling, data mining and statistical signal analysis [3].

Above all, most of the techniques like redundancy and task mi-
gration depend on a certain degree of system overprovisioning that
can become a cost which is unacceptable for all but mission-critical
environments.

Our investigations on fault tolerance were spurred in the con-
text of the EURETILE project [4], aimed at designing and imple-
menting a massively parallel, tiled and fault tolerant computer
architecture. In EURETILE we developed, the APEnet+ board—an
FPGA-based, high speed network interconnect designed for GPU-
accelerated clusters with 3D toroidal topology. Looking at the
many issues at hand, it seemed fitting a divide et impera approach
to the problem, identifying a fault tolerant system as having these
two properties:

e it is able to reliably acknowledge the occurrence of a faulty
situation, whether it has already befallen or is yet to happen—
system has fault awareness

e on such basis, it is able to determine and eventually initiate
appropriate measures to avoid, overcome or contain the fault—
system performs fault reaction

and deciding to focus as a first step solely on fault awareness.
For this reason, we added logic to APEnet+ supporting a mutual
watchdog mechanism between the FPGA and the host processor;
we call this logic LO|JFA|MO (LOcal FAult MOnitor).

It is common practice for a cluster node to assess the health
of the components it hosts (in this case, its network interface) by
some interface with onboard sensors; for that, APEnet+ provides
stats - temperature, voltage, error levels on its links - that are
available to a predicting heuristic in its evaluation for proactive
measures against network faults. Not so common is the fact that,
with LO|FA|MO, an APEnet+ board can do the reverse: it can au-
tonomously sense when its host misses an update to the shared
watchdog - e.g. host crashed for some reason - and, thanks to the
high connectivity of a 3D toroidal mesh, it can promptly notify the
problem to its network neighbours that can relay the information
to any supervising entity, be it centralized or distributed. Further-
more, even in case of either the board and the host faulting at the
same time - e.g. for a local power shortage - boards on first neigh-
bouring nodes can sense their peers going missing and notify the
supervisor on their behalf.

In this way, LO|FA|MO is a foundational, platform-agnostic
component for fast and reliable fault awareness, on top of which
a supervisor can be built.

In Section 2 there is a recap of fault tolerance literature specif-
ically regarding HPC and watchdog systems. An overview of the
LO|FA|MO architecture is in Section 3, containing a sketch of the
reference platform (this includes the LO|JFA|MO implementation
host - the APEnet+ board - and a reference platform deployment
- the QUonG cluster -), details of the watchdog mechanism and
a list of variables that LO|FA|MO can currently query for fault di-
agnosis. Actual LO|FA|MO hardware implementation is outlined in
Section 4 while the software daemon that interfaces LO|FA|MO
with the host OS - the Host Fault Manager (HFM) - is described
in Section 5. Distributed fault awareness for the system is derived
from how LO|FA|MO is designed to exploit the high connectivity of
a 3D toroidal mesh; this aspect is discussed in Section 6. In Section 7
it is assessed how quick the current LO|FA|MO implementation is
in detecting and diffusing faults information. Future investigations
in fault tolerance that we want to pursue with LO|FA|MO are out-
lined in Section 8; conclusions are in Section 9.

2. Related work

The literature shows a number of monitoring and fault detec-
tion tools for HPC clusters. A well known example is Ganglia [5], a
scalable monitoring tool for clusters and Grids.

Periodic device polling in order to monitor their liveness, i.e. the
use of watchdog components, either in hardware or software, is
well documented in fault tolerance; this has been applied perva-
sively to detect faults on distributed systems [6-8]. More widely
used at a software level is the similar concept of the heartbeats
mechanism [9], where devices to be monitored emit a sort of
(I'm alive) message [10]; obvious drawback is the generation
of network traffic overhead.

In order to avoid congestion due to diagnostic messages, in
many cases this health status information is gathered and dis-
patched along a secondary network. This is evolving towards
dedicated ancillary subsystems—an example of this trend is the
Intelligent Platform Management Interface (IPMI); a complete fault
tolerance solution for HPC clusters that uses IPMI is FTB-IPMI [ 11].

3. Local fault monitor (LO|FA|MO) approach

LO|FA|MO is a design approach that provides systemic fault
awareness in a distributed system. A LO|FA|MO-enabled system re-
quires:

e a dedicated hardware block inside the network interface card
hosted on each node that implements the 3D torus network
topology;

e adedicated software component running on each system node;

e a 3D torus network connecting computing nodes;

e a Service Network for diagnostic messages.

A mutual watchdog mechanism between the two LO|FA|MO com-
ponents ensures that the health status of the host and the NIC
is monitored on each node (locally). The 3D torus network and
the service network are two redundant paths for diagnostic
messages about fault and critical events occurring on each node;
moreover, the 3D toroidal network topology allows each node to
monitor its first neighbours. Diagnostic messages are delivered to
a few selected nodes (Supervisor Nodes, or shortly Supervisors)
that gather information about faults occurring to the whole sys-
tem, thus composing the big picture. The overall structure is clearly
hierarchical (Fig. 1): faults can be detected locally on each node
(lower level), or by first neighbours nodes (mid level); Supervisor



Download English Version:

https://daneshyari.com/en/article/424572

Download Persian Version:

https://daneshyari.com/article/424572

Daneshyari.com


https://daneshyari.com/en/article/424572
https://daneshyari.com/article/424572
https://daneshyari.com

