
Future Generation Computer Systems 53 (2015) 100–108

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A scalable thread scheduling co-processor based on data-flow
principles
R. Giorgi ∗, A. Scionti
University of Siena, Department of Information Engineering and Mathematics, Via Roma 56, Siena, Italy

h i g h l i g h t s

• We present a data-flow based co-processor supporting the execution of fine-grain threads.
• We propose a minimalistic core ISA extension for data-flow threads.
• We propose a two-level hierarchical scheduling co-processor that implements the ISA extension.
• We show the scalability of the proposed system through a set of experimental results.

a r t i c l e i n f o

Article history:
Received 31 July 2013
Received in revised form
9 October 2014
Accepted 28 December 2014
Available online 8 January 2015

Keywords:
Co-processor architecture
Data-flow
Many-core
High-performance systems

a b s t r a c t

Large synchronization and communication overhead will become a major concern in future extreme-
scalemachines (e.g., HPC systems, supercomputers). These systemswill push upwards performance limits
by adopting chips equipped with one order of magnitude more cores than today. Alternative execution
models can be explored in order to exploit the high parallelismoffered by futuremassivemany-core chips.
This paper proposes the integration of standard cores with dedicated co-processing units that enable
the system to support a fine-grain data-flow execution model developed within the TERAFLUX project.
An instruction set architecture extension for supporting fine-grain thread scheduling and execution is
proposed. This instruction set extension is supported by the co-processor that provides hardware units for
accelerating thread scheduling and distribution among the available cores. Two fundamental aspects are
at the base of the proposed system: the programmers can adopt their preferred programmingmodel, and
the compilation tools can produce a large set of threads mainly communicating in a producer–consumer
fashion, hence enabling data-flow execution. Experimental results demonstrate the feasibility of the
proposed approach and its capability of scaling with the increasing number of cores.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Continuous improvements in silicon technology allow the inte-
gration of an increasing number of computing units and memory
space in a chip [1]. Such chips represent the elementary block for
building future extreme-scale systems, but impose several chal-
lenges for designers. The International Exascale Software Project
(IESP) roadmap [2] has identified the most relevant issues for, e.g.,
the processing elements, interconnections and memory subsys-
tem that must be solved in order to increase 1000× in perfor-
mancewith relation to current high-performance systems. In order
to scale, these computing systems should limit the synchroniza-
tion and communication overheads among processing elements

∗ Corresponding author.
E-mail addresses: giorgi@dii.unisi.it (R. Giorgi), scionti@dii.unisi.it (A. Scionti).

and memory subsystem [3,4]. Solving these problems may require
the adoption of new programming and execution models that are
able to efficiently exploit the massive parallelism offered by the
underlying hardware. Since it is expected that each computing unit
will manage even 100 or more concurrent threads [2,3,5], efficient
and dedicated mechanisms for rapid thread context switching and
synchronization will greatly help.

The TERAFLUX [6] project1 aims at proposing technologies for
improving scalability and reliability of future many-core chips. To
this end, the project largely explores the data-flow paradigm (here
intended in the most general way) at different levels. The capa-
bilities of standard cores (e.g., x86_64 cores) are augmented with

1 This work has been partially funded by the European FP7 project TERAFLUX id.
249013.

http://dx.doi.org/10.1016/j.future.2014.12.014
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2014.12.014
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2014.12.014&domain=pdf
mailto:giorgi@dii.unisi.it
mailto:scionti@dii.unisi.it
http://dx.doi.org/10.1016/j.future.2014.12.014


R. Giorgi, A. Scionti / Future Generation Computer Systems 53 (2015) 100–108 101

hardware support for fine-grain thread scheduling. The schedul-
ing support is exposed in the instruction set architecture (ISA)
by a minimalistic set of co-processor instructions. The dedicated
hardware units allow the scheduling of threads following a pro-
ducer–consumer model.

This paper describes the lowest layer of the TERAFLUX
hierarchy, focusing on the overall system organization, and more
specifically on the hardware extension of the cores. This hardware
extension is represented by a co-processor that is responsible
for assisting the distribution of threads among the cores. A
minimalistic set of new instructions (6 instructions) is introduced
allowing the program to directly schedule new threads, read and
write data from specific memory regions, and destroy threads that
have completed their execution.

The rest of the paper is organized as follows. Section 2 presents
relevant works regarding data-flow execution models, data-flow
oriented architectures, and hardware thread schedulers. Motiva-
tions for the proposed work are explained in Section 3. Section 4
provides an overview of our system, focusing on the co-processor
organization and the executionmodel. Section 5 introduces the in-
struction set extension that allows programs to support data-flow
thread management. We also describe in depth two small kernel
applications, to showhow the co-processor directly support thread
scheduling. In Section 6 we provide a description of the simulation
methodology. Experimental results in Section 7 demonstrate the
scalability of the proposed approach, while Section 8 concludes the
paper.

2. Related work

The data-flow model of computation offers a simple solution
to achieve high-performance by limiting the necessity of synchro-
nization, and allowing high degree of concurrency and specula-
tion [7,4]. However, synchronizing a large number of concurrent
activities leads to sequentialization, thus defeating the potential
gain of the parallel execution. In the data-flow execution model,
parallel activities are enabledwhen they receive all the required in-
puts [8,9]. Themodel uses a graph to represent the units of compu-
tation (activities) and the flow of data among these units. Research
works proposed several way to formalize this model of computa-
tion [8–12].

With the advent of many-core systems [13,14], architectures
able to exploit the data-flow execution model have been proposed
[15,16,6,17]. Wavescalar [18] is a tagged-token data-flow archi-
tecture designed to minimize the communication cost of moving
data among processing units. The architecture implements a de-
centralized token-store execution model that limits the memory
necessary to represent the data-flow execution graph. Scheduled
DataFlow architecture [15] implements a hybrid control-/data-
flow execution model. It applies the data-flowmodel at the thread
level and decouples memory accesses from execution. Maxeler
is a company specialized in designing special purpose computers
based on a data-flow engine [17]. The data-flow graph is used to
program reconfigurable hardware devices (FPGAs) with the aim of
mapping computations to corresponding hardware functions. Et-
sion et al. [19] explore the data-flow execution model at the task
level. Task level parallelization is supported by various program-
ming models [20–22]. The architecture implements a hardware
front-end that concurrently executes the tasks on a group of cores.
Although these architectures have demonstrated to be effective in
supporting the data-flow paradigm, the adoption of non standard
cores and programming models limits their application.

The Kalray MPPA-256 processor [23] provides a clustered
architecture similar to the one proposed in this paper. A resource
management core is responsible for allocating cluster resources
to the processing cores. This processor differs from our processor

mainly in the adoption of Kahn process networks on top of VLIW
cores, as the data-flow model.

Also other architectures resort to hardware schedulers and re-
source managers to gain in performance. The NVIDIA GigaThread
Engine [13] issues a group of threads to each cluster of process-
ing units based on a task allocation policy, while a local scheduler
distributes the threads among the processing units. Plurality Hy-
percore [16] is a hybrid control-/data-flow machine. Plurality has
implemented a hardware scheduler that receives the task graph
description, and dispatches runnable tasks as soon as cores become
available. In the next section we describe the motivations that are
at the base of our work.

3. Motivations

With the aim of exploiting the hardware capabilities of many-
core chips, programming models must evolve accordingly. Several
Programming Models (PMs in the following) have been proposed
to support task and thread distribution both in homogeneous
and heterogeneous systems. In homogeneous systems, many-core
chips presenting the same general purpose architecture (e.g., cur-
rent x86_64 processors) are organized into clusters. For this kind
of machines some PMs such as OpenMP [20], MPI [24], Cilk [21]
became widely adopted. In heterogeneous cluster machines, the
system is composed of a mix of multi-core, many-core chips and
accelerators. Among the others, GP-GPUs have become widely
used as accelerator platforms. PMs like CUDA [22] are designed
to partition the program execution between CPUs and accelera-
tors, and move data in and out the accelerator. With the increas-
ing complexity of computing systems, the above mentioned PMs
exhibit their limits. Synchronization among various threads run-
ning on separated cores is one of the barrier for scalability of ho-
mogeneous many-core chips [2,3]. In heterogeneous systems the
PMmay introduce the overhead of transferring data in and out the
accelerator.

Our aim is to exploit the hardware resources by efficientlymap-
ping programs to fine-grain data-flow threads. As of our initial ex-
periments, data-flow programs could be automatically generated
by a compilation toolchain starting froma source codewrittenwith
a well-known imperative programming language (e.g., pure C/C++
language), and splitting the code in fine-grain threads (we con-
sider the scheduled data-flow execution model) [25]. Since each
thread contains few tens of instructions, the compilation toolchain
can generate enough threads to maintain the machine cores
utilized. Simple hardware units can be added to standard cores to
effectively execute data-flow programs. By restricting the commu-
nication and synchronization to a data-flow modality, we can en-
able interesting properties such as isolation and repeatability of
computations. Applications that could benefit from the adoption
of the data-flow execution model are largely available in the High-
Performance Computing (HPC) and High-Performance Embedded
Computing (HPEC) domains.

4. System overview

One of the objectives in TERAFLUX [6,26] is the design scalabil-
ity of the proposed system. Modularity [27,23] is largely used to
overcome the limits of designing complex control networks, and
the bottlenecks of interconnecting a huge number of processing
units. Fig. 1 shows the whole system organization with a detail
on the node structure. The system is organized in nodes intercon-
nected by a scalablemedium like a network-on-chip (NoC). I/O op-
erations can be managed by dedicated units. Each node has a low-
latency, high-bandwidth local interconnect (e.g., a shared bus, log-
arithmic interconnect, etc.). Internally, we assume that each node
contains a dedicated memory controller (MC) and a shared last



Download English Version:

https://daneshyari.com/en/article/424573

Download Persian Version:

https://daneshyari.com/article/424573

Daneshyari.com

https://daneshyari.com/en/article/424573
https://daneshyari.com/article/424573
https://daneshyari.com

