
Future Generation Computer Systems 49 (2015) 28–44

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Fair scheduling of bag-of-tasks applications on large-scale platforms
Javier Celaya ∗, Unai Arronategui
Dept. Informática e Ingeniería de Sistemas, Universidad de Zaragoza, María de Luna 1, 50018 Zaragoza, Spain

h i g h l i g h t s

• We present a scheduling model for fair resource sharing on large-scale platforms.
• It effectively aggregates information about application stretch.
• Task allocation is performed so that the maximum stretch is minimized.
• Our model is able to perform similar to a centralized implementation.
• The management overhead is bounded.

a r t i c l e i n f o

Article history:
Received 5 April 2014
Received in revised form
9 January 2015
Accepted 2 March 2015
Available online 11 March 2015

Keywords:
Fairness
Large-scale
Task scheduling

a b s t r a c t

Users of distributed computing platforms want to obtain a fair share of the resources they use. With
respect to the amount of computation, the most suitable measure of fairness is the stretch. It describes
the slowdown that the applications suffer for being executed in a shared platform, in contrast to being
executed alone. In this paper, we present a decentralized scheduling policy that minimizes themaximum
stretch among user-submitted applications. With two reasonable assumptions, that can be deduced from
existing system traces, we are able to minimize the stretch using only local information. In this way, we
avoid a centralized design and provide scalability and fault tolerance. As a result, our policy performs
just 11% worse than a centralized implementation, and largely outperforms other common policies.
Additionally, it easily scales to hundreds of thousands of nodes. We presume that it can scale to millions
with aminimal overhead. Finally, we also show that preemption is crucial to provide fairness in any case.

© 2015 Published by Elsevier B.V.

1. Introduction

It is common for a distributed computing platform to be shared
among several users, for instance, a cluster giving service to
several researchers of an academic institution, or a commercial
cloud infrastructure attending millions of requests from around
the world. All of them would like to obtain a fair share of the
platform. However, the most common scheduling policies are
incompatiblewith the fairness objective. They unbalance the share
of the platform among users to maximize the global throughput,
minimize the makespan or satisfy the negotiated SLA terms. So, it
is the scheduling policy itself who must enforce the fair sharing of
the platformamong its users.While several suchpolicies have been
proposed [1–9], they have serious scalability limitations. They are
usually implemented with a centralized design that relies on full
knowledge of the platform and the workload. This prevents them

∗ Corresponding author. Tel.: +34 876 55 55 31; fax: +34 976 76 19 14.
E-mail addresses: jcelaya@unizar.es (J. Celaya), unai@unizar.es

(U. Arronategui).

from managing the scheduling of tasks on systems of thousands,
or even millions of nodes, a scale that is becoming more common
every day.

In this paper we present the Fair Share Policy (FSP), a schedul-
ing policy that allocates bag-of-tasks (BoT) applications with fair-
ness in mind. It is a policy for STaRS [10], a scheduling model that
can be implemented as part of a distributed computing platform. It
provides scalability, fault-tolerance and the ability to support dif-
ferent scheduling policies. It is based on decentralized algorithms
that eliminate the bottlenecks of a centralized design, and it is best
suited for environments withmillions of nodes. So, throughout the
paper we assume that we deal with a very large platform and no
centralized scheduler.

To measure the share of the platform, we consider the amount
of computation that each user wants to get done. In this case,
the most suited metric seems to be the maximum stretch, or
slowdown [11,2]. The stretch of an application is defined as the
ratio of its response time under the concurrent scheduling of
applications to its response time when it is the only application
executed on the platform. It is the user’s perception of how slow its
applications run due to its sharing the platform with other users.

http://dx.doi.org/10.1016/j.future.2015.03.002
0167-739X/© 2015 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.future.2015.03.002
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.03.002&domain=pdf
mailto:jcelaya@unizar.es
mailto:unai@unizar.es
http://dx.doi.org/10.1016/j.future.2015.03.002


J. Celaya, U. Arronategui / Future Generation Computer Systems 49 (2015) 28–44 29

Let ri be the release time of an application Ai, ei its end time and Θi
its response time in a platform dedicated to itself, its stretch Si is
calculated as

Si =
ei − ri

Θi
. (1)

A perfectly fair share of the platform is obtained when all the
applications obtain the same stretch. However, this is only possible
with offline scheduling and divisible load. With these conditions,
the scheduler can adjust the end time of each application to reach
the optimumobjective. Instead,we consider a classic configuration
in distributed computing, with online scheduling and atomic tasks.
So, the best tradeoff is obtained by minimizing the maximum
stretch among all applications.

We already presented a first design of this policy in [12]. In
this paper, we widely improve the estimation and representation
of the stretch, to obtain much better results. In particular, the
main problem we face is that computing Θi usually requires full
knowledge of the platform. This is impractical with a decentralized
design, so we assume two reasonable hypothesis:

• Each application hasmuch less tasks than nodes in the platform.
• The distribution of computing power among nodes changes

very little.

With these premises, we are able to minimize the maximum
stretch without full knowledge of the platform.

The rest of the paper is organized as follows: Section 2 presents
the related work on fair scheduling, both in centralized and
decentralized environments. Then, Section 3 explains how we
solve the problemofminimizing themaximumstretchwithout full
knowledge of the platform. Section 4 gives a brief description of the
architecture of STaRS, on which this paper is based. In Sections 5
and 6,we explain the details of the FSP policy. And finally, Section 7
presents the results of the experiments and in Section 8we give our
conclusions and a description of the future work.

2. Related work

Several works have approached the fair scheduling of different
kinds of applications by minimizing the stretch. Benoit et al. [1]
study the minimization of maximum stretch for concurrent BoT
applications, likewedo, but in a centralized setting. They show that
interleaving tasks of several concurrent BoT applications perform
better than scheduling each application after the other. Previously,
Legrand et al. [2] focused on the scheduling of divisible load
applications. In particular, they schedule applications that search
large-scale genomic and proteomic sequence databanks. Casanova
et al. [3] show the challenges of minimizing the stretch of parallel
task graphs, due to their rigid constraints. They minimize both
stretch and makespan, and show that relaxing completion times
they can be still near to the perfectly fair schedule. OStrich [4]
extends the concept of stretch to campaigns, or whole sets of
jobs of the same user. In this way, they claim that the achieved
stretch is proportional to the campaign size. Wu and Cao [13] use
it to schedule dissemination-based applications. They propose a
low-overhead solution to the fair scheduling of on-demand data
broadcasts, where the contribution of each job to the system
response time depends on the data size.

MapReduce [14], Hadoop [15] or Dryad [16] have schedulers
with a trade-off between fairness and data locality. Quincy [17],
which is built on Dryad, is a centralized solver that improves the
throughput of jobs being allocated. For Hadoop, delay schedul-
ing [5,18] achieves nearly optimal data locality while preserving
fairness. While it includes the possibility of a distributed imple-
mentation, it follows a master–slave approach that can limit its
scalability.

Cloud computing infrastructures offer users the possibility of
sharing cost and resources among them. Different works enhance
the possibilities of fair scheduling in this context. From min–max
fair scheduling with constraints [6], to fair allocation of multiple
resource types [19,7,8]. Also, there are proposals to provide
hard delay guarantees with user fairness [9]. But none of them
proposes a decentralized solution or addresses the challenge of fair
scheduling in a scale of hundred of thousands, or even millions of
nodes.

In our previous work [10], we included a survey of related
work in decentralized scheduling of jobs for large-scale systems.
But we have found very few proposal about fairness in large-scale
architectures for cloud, grid or P2P computing systems. Östberg
et al. [20] propose Aequus, a decentralized fairshare scheduler for
grids. It tries to provide a similar share of the resources to every
user based on howmuch they have been using them in the past. A
hierarchical model, that reflects the grid organization (VOs, sites,
projects, users, etc.), represents the share that can be granted to
every user. Schedulers at each site use this information to assign
a priority to each job. The information is distributed among the
VOs and every scheduler is independent fromeach other. However,
as a result, a single scheduler may need to access the information
of all the users. On the contrary, we use a tree to both maintain
the information and forward tasks towards execution nodes, so
that each step is performed with local information only. Bertin
et al. [21] present a fair decentralized scheduling algorithm for BoT
applications with arbitrary communication-to-computation ratio.
It is based on Lagrangian optimization and distributed gradient
descent. As a result, when the algorithm converges, applications
obtain a similar share of both computational and network
resources. However, the largest tests are performed on 500-node
platforms,much smaller than the hundred thousand nodes thatwe
have tested. As the authors admit, there are still many aspects to
improve, so we expect to see much better results. In the domain of
HTC exascale systems, there are some decentralized architectures,
based on work stealing, for load balancing of distributed jobs
[22,23]. However, they do not deal with fairness.

The fair sharing of resources has been deeply studied before in
other areas, like networking [24,25], which consider the amount
of data to be transferred by each user. In particular, fair scheduling
with a fully decentralized architecture has been proposed in mesh
networks for sharing resources as bandwidth, time, frequency,
relays, etc. [26–31]. But the challenge of large-scale networks was
not considered in any of these works. Also, better results have
been shown applying a decentralized model for fair scheduling
in multiprocessors [32]. As in mesh networks, the scale being
considered was quite low, with experiments of 8 CPUs and 10
threads.

3. Fairness in a decentralized BoT environment

There are several issues we have to deal with if we want to
achieve fairness among BoT applications in a decentralized envi-
ronment. We consider that a BoT application Ai consists of ni tasks
of equal length ai, in millions of FLOPs. This is a common model
[1,21], although BoT applications with variable-length tasks [33]
will be tackled in the future. As stated by Eq. (1), to compute the
stretch of an application Ai we need to calculate its response time
if it was alone in the platform, Θi. The main problem we face is
that calculating Θi requires full knowledge of the platform’s char-
acteristics. While easily performed in a centralized context, it is
unthinkable in a decentralized one. So, we are going to limit the
problem with two premises, that will let us obtain a good approx-
imation of the stretch.

The first premise is that each application hasmuch less tasks than
nodes in the platform (although there is no limit in the number of



Download English Version:

https://daneshyari.com/en/article/424584

Download Persian Version:

https://daneshyari.com/article/424584

Daneshyari.com

https://daneshyari.com/en/article/424584
https://daneshyari.com/article/424584
https://daneshyari.com

