
Future Generation Computer Systems 29 (2013) 1885–1900

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Hopfield neural network for simultaneous job scheduling and data
replication in grids
Javid Taheri a,∗, Albert Y. Zomaya a, Pascal Bouvry b, Samee U. Khan c

a Centre for Distributed and High Performance Computing, School of Information Technologies, The University of Sydney, Sydney, NSW 2006, Australia
b Department of Electrical and Computer Engineering, University of Luxembourg, Luxembourg
c Department of Electrical Engineering, North Dakota State University, Fargo, USA

h i g h l i g h t s

• Simultaneous job and data allocation in grid environments.
• Calculate near optimal solution for all sorts of grid.
• Designed for real worlds jobs instead of the traditional simplistic view of jobs.
• Significant outperformance in comparison with current algorithms.
• Fast convergence speed; usually less than a minute for a medium-sized grid.

a r t i c l e i n f o

Article history:
Received 12 October 2011
Received in revised form
22 April 2013
Accepted 22 April 2013
Available online 9 May 2013

Keywords:
Job scheduling
Network aware scheduling
Data file migration policies
Grid environments

a b s t r a c t

This paper presents a novel heuristic approach, named JDS-HNN, to simultaneously schedule jobs and
replicate data files to different entities of a grid system so that the overall makespan of executing all jobs
as well as the overall delivery time of all data files to their dependent jobs is concurrently minimized.
JDS-HNN is inspired by a natural distribution of a variety of stones among different jars and utilizes a
Hopfield Neural Network in one of its optimization stages to achieve its goals. The performance of JDS-
HNNhas beenmeasured by using several benchmarks varying frommedium- to very-large-sized systems.
JDS-HNN’s results are compared against the performance of other algorithms to show its superiority
under different working conditions. These results also provide invaluable insights into scheduling and
replicating dependent jobs and data files as well as their performance related issues for various grid
environments.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Grid computing has matured into an essential technology that
enables the effective exploitation of diverse distributed comput-
ing resources to deal with large-scale and resource-intensive ap-
plications, such as those found in science and engineering. A grid
usually consists of a large number of heterogeneous resources
spanning acrossmultiple administrative domains. The effective co-
ordination of these heterogeneous resources plays a vital key role
in achieving performance objectives. Grids can be broadly classi-
fied into two main categories: computational and data, based on
their application focus. In recent years, the distinction between
these two classes of grids is much blurred, mainly due to the ever

∗ Corresponding author. Tel.: +61 290369718.
E-mail addresses: javid.taheri@sydney.edu.au (J. Taheri),

albert.zomaya@sydney.edu.au (A.Y. Zomaya), pascal.bouvry@uni.lu (P. Bouvry),
samee.khan@ndsu.edu (S.U. Khan).

increasing data processing demand inmany scientific, engineering,
and business applications, such as drug discovery, economic fore-
casting, seismic analysis, back-office data processing in support of
e-commerce, Web services, etc. [1].

In a typical scientific environment such as in High-Energy
Physics (HEP), hundreds of end-users may individually or collec-
tively submit thousands of jobs to access peta-bytes of distributed
HEP data. Given the large number of tasks resulting from split-
ting these bulk submitted jobs and the amount of data being used
by them, their optimal scheduling along with allocating their de-
manding data files becomes a serious problem for grids—where
jobs compete for scarce compute and storage resources among
available nodes. The Compact Muon Solenoid (CMS) [2] and the
Large Hadron Collider (LHC) [3] are two well known case stud-
ies for such applications and are used as a motivation to design
many systems including the algorithm in this article. Both sys-
tems constantly submit thousands of parallel jobs to access many
shared data files. In such systems, each job is an acyclic data flow
of hundreds of tasks in which CMS/LHR executable modules must

0167-739X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.04.020

http://dx.doi.org/10.1016/j.future.2013.04.020
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.04.020&domain=pdf
mailto:javid.taheri@sydney.edu.au
mailto:albert.zomaya@sydney.edu.au
mailto:pascal.bouvry@uni.lu
mailto:samee.khan@ndsu.edu
http://dx.doi.org/10.1016/j.future.2013.04.020


1886 J. Taheri et al. / Future Generation Computer Systems 29 (2013) 1885–1900

Table 1
Typical job characteristics in CMS [5].

Number of simultaneously active users 100–1000
Number of jobs submitted per day 250–10,000
Number of jobs being processed in parallel 50–1000
Turnaround time for jobs 0.2 s–5 months
Number of datasets that serve as input to a sub job 0–50
Average number of datasets accessed by a job 250–10,000 K
Average size of the dataset accessed by a job 30 GB–3 TB

run them in parallel [4]. Table 1 shows a typical number of jobs
from users and their computation and data related requirements
for CMS jobs [5].

Grid schedulers are mainly divided into two types: (1) job-
oriented and (2) data-oriented systems. In job-oriented systems,
data files are fixed in location and jobs are scheduled, usually
adhering to some objective such as power consumption [6,7]. In
this case, the goal is to schedule jobs among Computational Nodes
(CNs) to minimize the overall makespan of executing all jobs in
the whole system; here, it also is assumed that the overall transfer
time of all data files is relatively negligible compared to executing
jobs. The speed and number of available computer resources in
different CNs and the network capacity between CNs and Storage
Nodes (SNs) are typical considerations taken into account in such
systems. For data-oriented systems, on the other hand, jobs are
fixed in location and data files are moved and/or replicated in
the system so that their accessibility by their relevant jobs is
increased. In contrast to the previous mode, here it is assumed
that transfer time of all data files is much more time consuming
than executing their dependent jobs. As a result, jobs will need
less time to download the associated data files to execute and
therefore, the execution time (i.e., makespan of executing jobs plus
transfer time of data files) of the system is reduced. The available
storage in SNs and the capacity of interconnected network links
betweenCNs and SNs are typical considerations in such allocations.
From a practical point of view, neither of these two system types
is adequate to deal with cases in which both computational jobs
and data files are equally influential factors for efficient system
utilization. Therefore, inappropriate distribution of resources, large
queues, reduced performance, and throughput degradation for the
remainder of the jobs are some of the drawbacks of assuming
systems fit into just one of these two types.

There are three main phases of scheduling in such complex
systems [8]: (1) resource discovery, (2) matchmaking, and (3) job
execution. In the first phase, resource discovery, grid schedulers
conduct a global search to generate a list of all available resources
as well as their limitations and history profiles in a system. In
the second phase, matchmaking, schedulers try to determine best
choices for executing jobs and replicating data files. Capacities of
CNs/SNs as well as quality of the network connecting them are
among the basic characteristics that need to be considered by
schedulers to perform this phase. In the last phase, job execution,
schedulers produce commands for CNs and SNs to execute jobs and
replicate data files, respectively. Here, schedulers do not interfere
with details of such commands and leave CNs/SNs to perform their
allocated commands, including – but not limited to – data file
staging or system cleanups.

In this work, the matchmaking process of schedulers was
targeted and our contribution is a holistic scheduling approach to
concurrently minimize two very important performance factors
of a grid system, i.e., (1) makespan for executing all jobs, and (2)
transfer time of all data files. Our approach schedules jobs and
replicates data files with respect to (1) characteristics of CNs/SNs
in a system, (2) inter-dependences between jobs and data files, and
(3) network bandwidth among CNs/SNs to host these jobs and data
files.

The rest of this paper is organized as follows. Section 2 presents
the related works to solve the stated problem. Section 3 presents
the assumed framework for this article. Section 4 presents the
problem statement. Section 5 presents preliminaries of our pro-
posed algorithm, i.e., (i) the original algorithm to distribute a vari-
ety of stones into different jars, and (ii) fundamentals of a Hopfield
Neural Network (HNN) optimizer. Section 6 presents JDS-HNN, fol-
lowed by its results in Section 7. Discussion and analysis of results
and conclusions are presented in Sections 8 and 9, respectively.

2. Related works

Several approaches have already been proposed to solve the bi-
objective scheduling problem that is the focus of this work.Most of
these methods make certain assumptions about the nature of jobs
and data files to present a specific real system. Their solutions can
be roughly categorized into two classes: online and batch [9]. In the
online methods, it is assumed that jobs arrive one-by-one, usually
following a predetermined distribution, and grid schedulers must
immediately dispatch these jobs upon receiving them. In the batch
methods (also known as batch-of-jobs or bulk) jobs are assumed
to be submitted in a bulk and thus, grid schedulers need to allocate
several jobs at the same time. Although the online mode can be
a fair representation of small grids, CMS and LHR as well as many
othermassive systems always process their jobs in the batchmode.
To date, most approaches usually use only one mode (online or
batch) and only few exist that use both.

The European Data Grid (EDG) project was among the first that
has created a resource broker for itsworkloadmanagement system
based on an extended version of Condor [10]. The problem of bulk
scheduling also has been addressed through shared sandboxes
in the most recent versions of gLite from the EGEE project [11].
Nevertheless, these approaches only consider one of the priority
and/or policy controls rather than addressing the complete suite
of co-allocation and co-scheduling issues for bulk jobs. In another
approach for data intensive applications, data transfer time was
considered in the process of scheduling jobs [12]. This deadline
based scheduling approach however could not be extended to
cover bulk scheduling. In the Stork project [13], data placement
activities in grids were considered as important as computational
jobs; therefore, data-intensive jobs were automatically queued,
scheduled, monitored, managed, and even check-pointed in this
system/approach. Condor and Stork also were combined to handle
both job and data file scheduling to cover a number of scheduling
scenarios/policies. This approach also lacks the ability to cover
bulk scheduling. In another approach [14], jobs and data files are
linked together by binding CNs and SNs into I/O communities.
These communities then participate in the wide-area system
where the Class Ad framework is used to express relationships
among the stakeholders. This approach however does not consider
policy issues in its optimization procedure. Therefore, although it
covers co-allocation and co-scheduling, it cannot deal with bulk
scheduling and its related management issues such as reservation,
priority and policy. The approach presented in [15] defines an
execution framework to link CPUs and data resources in grids
for executing applications that require access to specific datasets.
Similar to Stork, bulk scheduling is also left uncovered in this
approach.

In more complete works such as the Maui Cluster Scheduler
in [16], all jobs are queued and scheduled based on their priorities.
In this approach, which is only applicable for local environments
(i.e., for clusters rather than grids), weights are assigned based
on various objectives to manipulate priorities in scheduling
decisions. The data aware approach of the MyGrid [17] project
schedules jobs close to the data files they require. However,
this traditional approach is not always very cost effective as the



Download English Version:

https://daneshyari.com/en/article/424612

Download Persian Version:

https://daneshyari.com/article/424612

Daneshyari.com

https://daneshyari.com/en/article/424612
https://daneshyari.com/article/424612
https://daneshyari.com

