
Future Generation Computer Systems 29 (2013) 1981–1990

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

OpenMOLE, a workflow engine specifically tailored for the distributed
exploration of simulation models

Romain Reuillon ∗, Mathieu Leclaire, Sebastien Rey-Coyrehourcq
Géographie-cités - UMR 8504, 13 rue du Four, 75006 Paris, France
Institut des Systémes Complexes, 57-59 rue Lhomond, 75005 Paris, France

h i g h l i g h t s

• Experiments on complex-system models imply numerous model executions.
• This difficult task has been automated through a Domain Specific Language (DSL).
• It maps design of experiments to High Performance Computing Environments (HPCE).
• User-supplied models are executed in the Cloud (HPCE are exposed as services).
• The DSL is explained through a toy example and a real-life experiment.

a r t i c l e i n f o

Article history:
Received 15 February 2013
Received in revised form
6 May 2013
Accepted 17 May 2013
Available online 7 June 2013

Keywords:
Model exploration
Distributed computing
Workflow
Cloud computing
Complex-systems

a b s t r a c t

Complex-systems describe multiple levels of collective structure and organization. In such systems,
the emergence of global behaviour from local interactions is generally studied through large scale
experiments on numerical models. This analysis generates important computation loads which require
the use of multi-core servers, clusters or grid computing. Dealing with such large scale executions
is especially challenging for modellers who do not possess the theoretical and methodological skills
required to take advantage of high performance computing environments. That is why we have designed
a cloud approach for model experimentation. This approach has been implemented in OpenMOLE (Open
MOdeL Experiment) as a Domain Specific Language (DSL) that leverages the naturally parallel aspect of
model experiments. The OpenMOLE DSL has been designed to explore user-supplied models. It delegates
transparently their numerous executions to remote execution environment. From a user perspective,
those environments are viewed as services providing computing power, therefore no technical detail is
ever exposed. This paper presents the OpenMOLE DSL through the example of a toy model exploration
and through the automated calibration of a real-world complex-system model in the field of geography.

© 2013 Elsevier B.V. All rights reserved.

0. Introduction

A complex-system can be defined as a ‘‘system comprised of
a great number of heterogeneous entities, among which local
interactions create multiple levels of collective structure and orga-
nization’’ [1]. The emergence of the collective structure from nu-
merous local interactions is generally unpredictable analytically.
Therefore scientists use simulation models as a medium to study
complex-systems. Like the physical system they represent, the be-
haviour of such models are unpredictable and counter intuitive.
That is why large scale numerical experimentation is required

∗ Corresponding author at: Institut des Systémes Complexes, 57-59 rue Lhomond,
75005 Paris, France. Tel.: +33 142174033.

E-mail address: romain.reuillon@iscpif.fr (R. Reuillon).

in order to understand how patterns emerge from one scale to
another.

Complex-systemmodels are oftenmultiscale, stochastic and in-
dividual centred. Therefore, their execution is generally computa-
tionally intensive. Furthermore, the numerical experimentation on
such models might imply millions of executions [2,3]. This huge
computational load can only be carried out by high performance
computing environments.

Dealing with such broad computational loads is brain con-
suming, technically tricky, error prone and far from the specific
field of expertise of modellers. Hopefully, most model exploration
algorithms expose a naturally parallel aspect: the large number of
independent executions of the model is with no doubt the most
computationally intensive part. In this paper we describe how we
leveraged this natural parallelism to design a generic formalism
for distributed experimentation on complex-system models. This
formalism has been implemented in a platform called OpenMOLE

0167-739X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.05.003

http://dx.doi.org/10.1016/j.future.2013.05.003
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.05.003&domain=pdf
mailto:romain.reuillon@iscpif.fr
http://dx.doi.org/10.1016/j.future.2013.05.003


1982 R. Reuillon et al. / Future Generation Computer Systems 29 (2013) 1981–1990

(Open MOdeL Experiment),1 which provides a convenient way to
explore home-brewed models with quickly evolving implemen-
tations using advanced design of experiments. The contributions
of OpenMOLE are twofold: it exposes a language for describing
reusable design of experiments for simulation models and it pro-
vides an execution platform which distributes these experiments
on high performance computing environments in a transparent
manner.

This paper demonstrates the central concepts of the OpenMOLE
formalism. This platform is mature and used daily to explore real-
life complex-system models. However for the sake of the compre-
hension of this paper, OpenMOLE’s concepts are illustrated here by
the exploration of a toy complex-system model. The first section
presents the goal of the platform. Then the test model is exposed.
After that, thismodel is explored through several numerical exper-
iments of increasing complexity. Finally, the last section describes
a real case experiment on a multi-agent geographical model.

1. Distributed model exploration

1.1. The naturally parallel aspect of model experimentation

In the physical world, experimenting on complex systems (such
as: human societies, neural networks, insect swarms...) is generally
impossible, unethical or very costly. That is why scientists design
numerical models in order to facilitate the study of such systems.
The numerical modelling of complex phenomena especially eases
the experimentation required to understand how general patterns
emerge from local interactions to global behaviour. The experi-
ments are thus achieved in-silico, according to methods designed
for this purpose.

Among the available methods for numerical experiment on
models, one of the classics is the Design of Experiments (DoE)
based on statistics [4]. DoE have been widely studied to produce
sensitivity analysis on deterministic and stochastic simulations [5].
Most DoE generate a set of sampling values for the input of the
model. Each of them is evaluated through one or several model
executions depending on the stochastic nature of the model. In
DoE, each evaluation is independent and constitutes a naturally
parallel aspect.

Apart fromDoE othermethods have been designed to automate
the model calibration phase. Indeed, during the modelling process
some parameters might lack an empirical value. They are thus
fixed during a calibration phase. This task is time consuming, that
is why some methods have been designed to automate it. They
are generally based on an optimization algorithm (like in [6]) that
aims at minimizing the difference between the model behaviour
and an expected behaviour. Automated calibration algorithms
repeatedly evaluate the model for various sets of parameters in
order to find a global minima. Evaluating several configurations in
parallel speeds up the optimization process, therefore automated
calibration processes can also be considered as naturally parallel.

More recently, novel methods have been developed to explore
the fitness landscape, based on particle swarm optimization [7]
and on genetic algorithms [8]. These methods are particularly well
suited to map model dynamics. Swarm optimizations and genetic
algorithms both consider a population of solutions. The evaluation
of the fitness of individuals of the population can be processed in
a concurrent manner. Once again, that kind of method exposes a
naturally parallel aspect.

Another example of this naturally parallel aspect of model
exploration methods arises from a recent work of ours. We have

1 http://www.openmole.org.

applied viability theory [9] to explore all possible dynamics of a
model under a given set of constraints (this work is presented
in [2]). In this experiment themodel is evaluatedmillions of times.
Most of these evaluations are independent of each other, exposing
once again a naturally parallel aspect.

The list ofmethods in this section is not exhaustive, yet it shows
that when dealing with model exploration many methods expose
naturally parallel aspects. This natural parallelism concerns the
numerous executions of the model which are required in order to
understand its dynamics. This aspect is however rarely leveraged
to enhance computation speed. It is even called embarrassingly
parallel by some authors.

1.2. A generic platform for distributed model experimentation

Using distributed execution environment efficiently requires
methodological and technical skills. People possessing those
skills are generally not present in the community where model
experimentation on a large scale would be required. That is why
we have designed a platform that completely hides the burden of
distributed computing for model exploration.

The platform called OpenMOLE is based on a workflow for-
malism. This formalism is very suitable for representing parallel
processes. Several platforms already propose workflow engines
for scientific computing (for a review on scientific workflow plat-
forms see [10]). The most popular free and open-source ones are
Kepler [11],2 Taverna [12],3 Triana [13],4 Pegasus5 [14] and P-
Grade [15].6 Unlike those platforms, the design of OpenMOLE has
been focused on automating distributed experiments on complex-
systems simulation models. This requirement has led to a signifi-
cantly different design.

The design of OpenMOLE has been driven by the practices
of complex-system modellers. For instance, quickly evolving im-
plementations of complex-system models, in heterogeneous lan-
guages, and the need to experiment all along themodelling process
made it crucial to easily embed continuously changing user soft-
ware components in the platform. Other workflow platforms can
generally use external calls to users-provided programs but they
are not able to delegate them transparently to a remote execution
environment. In OpenMOLE, we have made it easy to embed mod-
els based on diverse languages (such as all JVM languages (java,
scala, groovy, clojure), NetLogo,7 native executables (C / C + + /
Python / Fortran / Scilab / Octave...), etc.) and to delegate their ex-
ecutions to remote execution environments.

To delegate model executions, OpenMOLE enforces a cloud ap-
proach. Following cloud concepts, it exposes remote execution en-
vironments as if theywere services that provide computing power.
It accesses themwithout exposing any technical specificities to the
user. To do so, the workload is delegated transparently directly
from the user computer to remote execution environments [16]
following a zero-deployment approach: required software compo-
nents are installed transparently and on-the-fly.

Finally, the necessity of carrying advanced design of experi-
ments, such as genetic algorithms or iterative refinement of the
exploration space, has pushed the design of the OpenMOLE to-
wards a very flexibleworkflow formalism. This formalismprovides
processing structures which are not yet available in many other
workflow platforms: cycles (loops), conditional branching, nested
workflows and implicit representation of massively parallel work-
flows.

2 http://kepler-project.org.
3 http://www.taverna.org.uk.
4 http://www.trianacode.org.
5 http://pegasus.isi.edu.
6 http://portal.p-grade.hu.
7 http://ccl.northwestern.edu/netlogo.

http://www.openmole.org
http://kepler-project.org
http://www.taverna.org.uk
http://www.trianacode.org
http://pegasus.isi.edu
http://portal.p-grade.hu
http://ccl.northwestern.edu/netlogo


Download English Version:

https://daneshyari.com/en/article/424620

Download Persian Version:

https://daneshyari.com/article/424620

Daneshyari.com

https://daneshyari.com/en/article/424620
https://daneshyari.com/article/424620
https://daneshyari.com

