Future Generation Computer Systems 29 (2013) 2284-2294

Contents lists available at ScienceDirect & =
FIGICIS
Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs . e

Self-healing of workflow activity incidents on distributed

computing infrastructures

—

@ CrossMark

Rafael Ferreira da Silva®*, Tristan Glatard?, Frédéric DesprezP

2 University of Lyon, CNRS, INSERM, CREATIS, Villeurbanne, France
Y INRIA, University of Lyon, LIP, ENS Lyon, Lyon, France

HIGHLIGHTS

e Autonomous detection/handling of operational incidents in workflow activities.

e Executions speed up to a factor of 4 and consume up to 26% less resources.

o Self-healing loop properly detects unrecoverable errors.

ARTICLE INFO ABSTRACT

Article history:

Received 10 August 2012
Received in revised form

14 February 2013

Accepted 6 June 2013
Available online 21 June 2013

Keywords:

Error detection and handling
Workflow execution
Production distributed systems

Distributed computing infrastructures are commonly used through scientific gateways, but operating
these gateways requires important human intervention to handle operational incidents. This paper
presents a self-healing process that quantifies incident degrees of workflow activities from metrics
measuring long-tail effect, application efficiency, data transfer issues, and site-specific problems. These
metrics are simple enough to be computed online and they make little assumptions on the application
or resource characteristics. From their degree, incidents are classified in levels and associated to sets of
healing actions that are selected based on association rules modeling correlations between incident levels.
We specifically study the long-tail effect issue, and propose a new algorithm to control task replication.
The healing process is parametrized on real application traces acquired in production on the European
Grid Infrastructure. Experimental results obtained in the Virtual Imaging Platform show that the proposed
method speeds up execution up to a factor of 4, consumes up to 26% less resource time than a control
execution and properly detects unrecoverable errors.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Distributed computing infrastructures (DCI) are becoming daily
instruments of scientific research, in particular through scientific
gateways [1] developed to allow scientists to transparently run
their analyses on large sets of computing resources. While these
platforms provide important amounts of resources in an almost
seamless way, their large scale and the number of middleware
systems involved lead to many errors and faults. Easy-to-use in-
terfaces provided by these gateways exacerbate the need for prop-
erly solving operational incidents encountered on DCIs since end
users expect high reliability and performance with no extra moni-
toring or parametrization from their side. In practice, such services
are often backed by substantial support staff who monitors run-
ning experiments by performing simple yet crucial actions such as

* Corresponding author. Tel.: +33 047243 7.
E-mail addresses: rafael.silva@creatis.insa-lyon.fr, rafaelsilvajp@gmail.com
(R. Ferreira da Silva), glatard@creatis.insa-lyon.fr (T. Glatard),
Frederic.Desprez@inria.fr (F. Desprez).

0167-739X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.06.012

rescheduling tasks, restarting services, killing misbehaving runs or
replicating data files to reliable storage facilities. Fair QoS can then
be delivered, yet with important human intervention.

For instance, the long-tail effect [2] is a common frustration for
users who have to wait for a long time to retrieve the last few
pieces of their computations. Operators may be able to address it
by rescheduling tasks that are considered late (e.g. due to execution
on a slow machine, low network throughput or just loss of contact)
but detection is very time consuming and still approximate.

Automating such operations is challenging for two reasons.
First, the problem is online by nature because no reliable user ac-
tivity prediction can be assumed, and new workloads may arrive
at any time. Therefore, the considered metrics, decisions and ac-
tions have to remain simple and yield results while the application
is still executing. Second, it is non-clairvoyant due to the lack of in-
formation about the applications and resources in production con-
ditions. Computing resources are usually dynamically provisioned
from heterogeneous clusters, clouds or desktop grids without any
reliable estimate of their availability and characteristics. Models of
application execution times are hardly available either, in particu-
lar on heterogeneous computing resources.

http://dx.doi.org/10.1016/j.future.2013.06.012
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.06.012&domain=pdf
mailto:rafael.silva@creatis.insa-lyon.fr
mailto:rafaelsilvajp@gmail.com
mailto:glatard@creatis.insa-lyon.fr
mailto:Frederic.Desprez@inria.fr
http://dx.doi.org/10.1016/j.future.2013.06.012

R. Ferreira da Silva et al. / Future Generation Computer Systems 29 (2013) 2284-2294 2285

A scientific gateway is considered here as a platform where
users can process their own data with predefined applications
workflows. Workflows are compositions of activities defined inde-
pendently from the processed data and that only consist of a pro-
gram description. At runtime, activities receive data and spawn
invocations from their input parameter sets. Invocations are as-
sumed independent from each other (bag of tasks) and executed
on the DCI as single-core tasks which can be resubmitted in case
of failures. This model fits several existing gateways such as e-
bioinfra [3], P-Grade [4], and the Virtual Imaging Platform [5]. We
also consider that the files involved in workflow executions are ac-
cessed through a single file catalog but that storage is distributed.
Files may be replicated to improve availability and reduce load on
Sservers.

The gateway may take decisions on file replication, resource
provisioning, and task scheduling on behalf of the user. Perfor-
mance optimization is a target but the main point is to ensure
that correctly-defined executions complete, that performance is
acceptable, and that misbehaving runs (e.g. failures coming from
user errors or unrecoverable infrastructure downtimes) are quickly
detected and stopped before they consume too many resources.

Our ultimate goal is to reach a general model of such a scientific
gateway that could autonomously detect and handle operational
incidents. In this work, we propose a healing process for work-
flow activities only. Activities are modeled as Fuzzy Finite State
Machines (FuSM) [6] where state degrees of membership are de-
termined by an external healing process. Degrees of membership
are computed from metrics assuming that incidents have outlier
performance, e.g. a site or a particular invocation behaves differ-
ently than the others. Based on incident degrees, the healing pro-
cess identifies incident levels using thresholds determined from
platform history. A specific set of actions is then selected from as-
sociation rules among incident levels. We specifically study the
long-tail effect issue, and propose a new algorithm to control task
replication.

Section 2 presents related work. Our approach is described in
Section 3 (general healing process), Section 4 (metrics used to
quantify incident degrees), Section 5 (identification of incident
levels), and Section 6 (actions). Experimental results are presented
in Section 7 in production conditions.

2. Related work

Managing systems with limited intervention of system admin-
istrators is the goal of autonomic computing [7], which has been
used to address various problems related to self-healing, self-
configuration, self-optimization, and self-protection of distributed
systems. For instance, provisioning of virtual machines is studied
by Nguyen et al. [8] and an approach to tackle service overload,
queue starvation, “black hole” effect and job failures is sketched
by Collet et al. [9].

An autonomic manager can be described as a so-called MAPE-K
loop which consists of monitoring (M), analysis (A), planning (P),
execution (E) and knowledge (K). Generic software frameworks
were built to wrap legacy applications in such loops with lim-
ited intrusiveness. For instance, Broto et al. [10] demonstrate the
wrapping of DIET grid services for autonomic deployment and con-
figuration. We consider here that the target gateway can be instru-
mented to report appropriate events and to perform predefined
actions.

Monitoring is broadly studied in distributed systems, both at
coarse (traces, archives) and fine time scales (active monitoring,
probing). Many workload archives are available. In particular, the
grid observatory [11] has been collecting traces for a few years on
several grids. However, as noted by Iosup and Epema [12], most
existing traces remain at the task level and lack information about

workflows and activities. Application patterns can be retrieved
from logs (e.g. bag of tasks) but precise information about work-
flow activities is bound to be missing. Studies on task errors and
their distributions are also available [13,14], but they do not con-
sider operational issues encountered by the gateways submitting
these tasks. Besides, active monitoring using tools such as Nagios
[15] cannot be the only monitoring source when substantial work-
loads are involved. Therefore, we rely on traces of the target gate-
way, as detailed in Section 5. One issue in this case is to determine
the timespan where system behavior can be considered steady-
state. Although this issue was recently investigated [16], it remains
difficult to identify non-stationarities in an online process and we
adopt a stationary model here.

Analysis consists in computing metrics (a.k.a. utility functions)
from monitoring data to characterize the state of the system. Sys-
tem state usually distinguishes two regimes: properly functioning
and misfunctioning. Zhang et al. [17] assume that incidents lead
to non-stationarity of the workload statistics and use the Page-
Hinkely test to detect them. Stehle et al. [18] present a method
where the convex hull is used instead of hyper-rectangles to clas-
sify system states. As described in Section 5, we use multiple
threshold values for a given metric to use more than two levels to
characterize incidents.

Planning and actions considered in this work deal with task
scheduling and file replication. Most scheduling approaches are
clairvoyant, meaning that resource, task, error rate and work-
load characteristics are precisely known [19,20]. The heuristics de-
signed by Casanova et al. [21] for the case where only data transfer
costs are known are an exception, on an offline problem though.
Quintin and Wagner [22] also propose an online task scheduling
algorithm where only some characteristics of the application DAG
are known. Camarasu-Pop et al. [23] propose a non-clairvoyant
load-balancing strategy to remove the long-tail effect in produc-
tion heterogeneous systems, but it is limited to Monte-Carlo sim-
ulations.

The general task scheduling problem is out of our scope. We as-
sume that a scheduler is already in place, and we only aim at per-
forming actions when it does not deliver expected performance. In
particular, we focus on site blacklisting and on dynamic task repli-
cation [24] to avoid the long-tail effect.

Task replication, a.k.a. redundant requests is commonly used to
address non-clairvoyant problems [2], but it should be used spar-
ingly, to avoid overloading the middleware and degrading fairness
among users [25]. In this work, task replication is considered only
when activities are detected blocked according to the metric pre-
sented in Section 4. An important aspect to be evaluated is the
resource waste, a.k.a. the cost of task replication. Cirne et al. [2]
evaluate the waste of resources by measuring the percentage of
wasted cycles among all the cycles required to execute the appli-
cation.

File replication strategies also often assume clairvoyance on
the size of produced data, file access pattern and infrastructure
parameters [26,27]. In practice, production systems mostly remain
limited to manual replication strategies [28].

3. General healing process

An activity is modeled as an FuSM with 13 states shown on
Fig. 1. The activity is initialized in Submitting Invocations
where all the tasks are generated and submitted. Tasks consist of
4 successive phases: initialization, inputs download, application
execution and output upload. They are all assumed independent,
but with similar execution times (bag of tasks). Running is a
state where no particular issue is detected; no action is taken and
the activity is assumed to behave normally. Completed (resp.
Failed) is a terminal state used when all the invocations are

Download English Version:

https://daneshyari.com/en/article/424646

Download Persian Version:

https://daneshyari.com/article/424646

Daneshyari.com

https://daneshyari.com/en/article/424646
https://daneshyari.com/article/424646
https://daneshyari.com

