Future Generation Computer Systems 29 (2013) 1808-1815

Contents lists available at SciVerse ScienceDirect L _-_ =
FiGICIS!

Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs ==

Performance comparison under failures of MPI and MapReduce:

An analytical approach

Hui Jin**, Xian-He Sun®

2 Parallel Query Group, Oracle, USA
b Department of Computer Science, Illinois Institute of Technology, USA

HIGHLIGHTS

Analytical models are proposed to quantify the impact of failures.

A numerical study is conducted on both MPI and MapReduce applications under failures.
The impact of different parameters on the failure-prone performance is investigated.
Extensive experiments are carried out to examine the accuracy of the proposed models.

ARTICLE INFO ABSTRACT

Article history:

Received 1 September 2012
Received in revised form

22 January 2013

Accepted 30 January 2013
Available online 6 March 2013

Keywords:
Fault tolerance
MPI
MapReduce
Checkpoint

MPI has been the de facto standard of parallel programming for decades. There has been an increasing
concern about the reliability of MPI applications in recent years, partially due to the inefficiency of parallel
checkpointing. MapReduce is a new programming model originally introduced to handle massive data
processing. There are numerous efforts recently that transform classical MPI based scientific applications
to MapReduce, due to the merits of easy programming, automatic parallelism, and fault tolerance of
MapReduce. However, the stricter synchronization primitive supported by MapReduce also imposes
considerable overhead.

While the failure-free performance comparison between MPI and MapReduce has been investigated,
there exists little work in comparing the two programming models under failures. In this paper, we
propose an analytical approach to quantifying the capabilities of the two programming models to tolerate
failures for a comparison. We also carry out extensive numerical analysis to study the impact of different
parameters on fault tolerance. This work can be used by the HPC community for various purposes in
making critical decisions. For example, it helps algorithm designers to answer the question such as,
at which scale should we give up MPI and use MapReduce as the programming model for a better
performance under the presence of failures?

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

However, its applicability is challenging at extreme scale due to its
excessive disk access and limited scalability [2,3].
MapReduce [4] is a newly emerged programming model

MPI [1] has been the de facto standard for parallel programming
for decades. MPI utilizes a rich set of communication and synchro-
nization primitives and supports classical scientific applications.
While HPC is evolving towards exascale and continues to grow in
the scale, a significant challenge facing MPI is its support for fault
tolerance. Due to the dependencies among the processes, a failure
to single process will soon be propagated to other processes and
leads to the collapse of the entire application. Checkpointing is cur-
rently the state-of-the-art solution to support MPI fault tolerance.

* Corresponding author. Tel.: +1 650 506 1917.
E-mail addresses: hui.x.jin@oracle.com (H. Jin), sun@iit.edu (X.-H. Sun).

0167-739X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.01.013

originated from massive data processing, which has gained much
praise from the community due to its ease of programming,
automatic parallelism and fault tolerance. Numerous efforts have
been made recently to introduce MapReduce as the programming
model for scientific computing [5-13]. While the failure-free
performance comparison between MPI and MapReduce has
been investigated, the performance comparison of the two
programming models under failures has been rarely studied. This
paper aims to perform a quantitative comparison between the two
programming models and answer the questions as follows,

e Given a set of system parameters (i.e., the number of processes,
Mean Time Between Failures (MTBF), and failure recovery
cost), which programming paradigm should be chosen for a

http://dx.doi.org/10.1016/j.future.2013.01.013
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:hui.x.jin@oracle.com
mailto:sun@iit.edu
http://dx.doi.org/10.1016/j.future.2013.01.013

H. Jin, X.-H. Sun / Future Generation Computer Systems 29 (2013) 1808-1815 1809

better performance? At which scale should we give up MPI
and use MapReduce as the programming model for a better
performance under the presence of failures?

e When transforming an MPI program to its MapReduce counter-
part, how to control the extra overhead such that MapReduce
can lead to a performance that is competitive to MPI under fail-
ures?

e As a benefit of fault tolerance, MapReduce can provide perfor-
mance comparable to MPI even with the commodity hardware.
How do we make the decision of hardware acquisitions balanc-
ing between performance, reliability and cost?

The contribution of this research is three-fold,

e We propose queuing models to predict the performance of
both MPI and MapReduce with the consideration of failures,
the underlying programming structure and corresponding fault
tolerance mechanisms.

e To show how the proposed models can be used for quantitative
performance comparison, we present numerical analysis and
case studies to answer the questions listed above. The impacts
of different parameters on the selection of programming
models are also analyzed.

e Extensive simulations and experiments have been conducted
based on both synthetic data and failure traces from production
systems to verify the accuracy of the proposed performance
model and understand the performance implications.

The rest of this paper is organized as follows. Section 2 reviews
the results of existing related work and introduces the background
of MPI and MapReduce from the perspective of programming
structure and the failure handling mechanisms. Section 3 presents
the performance model to predict the performance of MPI and
MapReduce applications. In Section 4, we carry out quantitative
analysis to study the impact of different parameters and how the
models can be utilized to answer the aforementioned questions.
Simulations and experiments are conducted in Section 5 to verify
the correctness of the model. We conclude this study in Section 6.

2. Background

2.1. MapReduce for scientific computing

MapReduce is a framework for processing large scale datasets.
It mainly consists of two steps, Map and Reduce [4]. Users
specify the Map and Reduce functions and the underlying runtime
system automatically parallelizes the computation across large-
scale clusters of machines.

To benefit scientific computing with the MapReduce program-
ming model, numerous efforts have been elaborated to adapt
scientific computing modules into MapReduce. In [5], Tu et al.
proposed to implement the longest molecular dynamics (MD)
in a MapReduce fashion. CloudBurst was proposed in [7] as
a new highly sensitive parallel seed-and-extend read-mapping
DNA sequencing algorithm based on MapReduce. The authors of
[6,8] transformed high energy physics (HEP) data analysis and K-
means clustering into MapReduce literature. Kwon et al. showed
how a clustering problem can be effectively implemented in a
MapReduce-style framework [9]. Bryant demonstrated an inter-
esting case study of implementing sparse matrix multiplication in
MapReduce in [10]. In [14], the authors exploited the feasibility of
using MapReduce for matrix computation.

Efforts are also dedicated to integrate MapReduce and HPC
applications from the perspective of system support. MR-MPI
from Sandia National Laboratory is a lightweight library that
implements the basic MapReduce functionality on top of MPI
runtime systems [11]. The Hadoop community proposes Hamster

to make MPI a first-class citizen on a Hadoop cluster [15].
In [12], Hoefler et al. discussed common strategies to implement
a MapReduce runtime and the possible optimization on top of
MPL Twister is a runtime that extends MapReduce with iterative
operations [16]. In [17], the authors have proposed an approach
to running HPC applications on top of MapReduce file systems by
bridging the semantic gaps.

2.2. MPI vs. MapReduce: programming structure

MPI is a library specification for message-passing, proposed as a
standard by a broadly based committee of vendors, implementors,
and users [1]. MPI can be used to implement the applications with
ad hoc communications patterns within the process groups.

The performance comparison of MPI and MapReduce is a
research topic under intensive study [6,8,14,18,19]. Nevertheless,
all these works observed the performance degradation when
transforming computing modules from MPI to MapReduce. The
possible reasons for the extra overhead include,

1. The inflexibility in the communication/synchronization. Map-
Reduce does not support flexible communication/synchroniz-
ation among the processes. Some widely used collective MPI
operations such as All-To-All, All-To-One and One-To-All are not
supported by MapReduce. The barrier operation can only be
placed at the end of the Map phase. Iterative operations are also
not supported directly by MapReduce.

2. The inflexibility in job decomposition. The tasks are indepen-
dent of each other during the Map or Reduce phase, which
makes the sharing of some common computation components
impossible.

3. The overhead in data manipulation. MapReduce utilizes data in-
tensive file systems such as Google file system [20] or HDFS [21]
as the underlying storage systems. These systems adopt multi-
ple replicas to facilitate fault tolerance, which further under-
mines the performance of MapReduce applications from the
perspective of data manipulation.

4. The inflexibility in the intermediate results. The intermediate
results must be designed to follow the key/value pattern in
MapReduce.

5. Platform-specific overheads. Hadoop is an open-source imple-
mentation of MapReduce and has been widely deployed on both
research and production systems [22]. Potential overhead may
be introduced due to the fact that Hadoop is implemented with
JAVA.

This research builds its study on the recognition of MapReduce’s
disadvantage over MPI, but focuses on the performance study of
the two programming paradigms when the impact of failures can-
not be ignored. This paper focuses on the computing components
that can be transformed to the MapReduce model. The applications
that cannot be deployed on MapReduce are outside the scope of
this work.

2.3. MPI vs. MapReduce: fault tolerance

From the perspective of reliability, MapReduce differs from
MPI in both the impact scope of failures and the failure handling
mechanism.

2.3.1. Impact of failures

Different programming models have distinctive capabilities to
tolerate failures, depending on whether the impact of failures can

Download English Version:

https://daneshyari.com/en/article/424666

Download Persian Version:

https://daneshyari.com/article/424666

Daneshyari.com

https://daneshyari.com/en/article/424666
https://daneshyari.com/article/424666
https://daneshyari.com

