
Future Generation Computer Systems 28 (2012) 854–860

Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Decentralized approach to resource availability prediction using group
availability in a P2P desktop grid
Karthick Ramachandran ∗, Hanan Lutfiyya, Mark Perry
Department of Computer Science, University of Western Ontario, London, Ontario, Canada

a r t i c l e i n f o

Article history:
Received 15 June 2010
Accepted 12 October 2010
Available online 18 November 2010

Keywords:
Peer-to-peer desktop grids
Resource availability
Cloud computing
Group availability

a b s t r a c t

In a desktop grid model, the job (computational task) is submitted for execution in the resource only
when the resource is idle. There is no guarantee that the job which has started to execute in a resource
will complete its executionwithout any disruption from user activity (such as a keyboard stroke ormouse
move) if the desktop machines are used for other purposes. This problem becomes more challenging in a
Peer-to-Peer (P2P)model for a desktop gridwhere there is no central server that decides to allocate a job to
a particular resource. This paper describes a P2P desktop grid framework that utilizes resource availability
prediction, using group availability data. We improve the functionality of the system by submitting the
jobs on machines that have a higher probability of being available at a given time. We benchmark our
framework and provide an analysis of our results.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Volunteer computing is a type of distributed computing in
which computer owners donate computing resources (e.g., CPU
cycles and storage) for one or more Several initiatives [1–5] in
volunteer computing have shown the potential computing power
achieved in exploiting the CPU cycles of thousands of machines
that are connected to the internet.

Volunteer computing systems often use a master–worker style
of computing where tasks are distributed from a master machine
(server) to worker machines (volunteers). The tasks are stored
in servers and are sent to the clients for execution. The task is
referred to as a job. Worker machines register with the server
preferences indicating when work can be done on the machine.
This information is periodically updated. The server (or in some
systems a cluster of servers) maintains all information about
projects and volunteers. As systems grow larger this becomes a
bottleneck. That has led to investigating the use of peer-to-peer
(P2P) architectures for volunteer computing systems (e.g., [6,7]).

Studies (e.g., [8]) suggest that since volunteer computing
systems are often less available than controlled clusters that
the latter are preferable despite the former being more cost-
effective. There are several contributing factors that make it
difficult to guarantee the availability of computing resources:
(i) resources are donated but not necessarily dedicated, meaning
that resources that are available for use change dynamically over

∗ Corresponding author.
E-mail address: kramach@csd.uwo.ca (K. Ramachandran).

time; (ii) high arrival/departure rates mean that it is difficult
to provide guarantees about resource availability; (iii) since the
donated resources are not dedicated it is possible for the resource’s
owner to initiate activity that may disrupt the job using the
resource.

A P2P environment provides an additional challenge since no
resource specific data is stored in a centralized server which
makes it difficult to store monitored data needed for resource
availability prediction. The primary contribution of this work is to
provide a P2P framework for resource selection that incorporates
resource availability prediction. In investigating the incorporation
of resource availability, we realized that there are environments
where resources are not always used by one particular person
(e.g., a university computer laboratory). In this caseweneed to take
into account the usage pattern of a group of resources.

This paper is organized as follows. Section 2 presents an
architecture and the metrics used to predict future availability.
Section 3 describes the implementation details. Section 4 outlines
the validation methods. Section 5 describes related work and
Section 6 concludes with our observations and future work.

2. Architecture

This section presents the overall architecture of our system
(Fig. 1). It has these components: Servers, Client software, Work
Units and a Prediction Engine. Volunteers, i.e. desktop machines,
are referred to as peers.

2.1. Servers

Although resource discovery is P2P, there are several types of
servers needed. The job server maintains a repository of the jobs

0167-739X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2010.10.006

http://dx.doi.org/10.1016/j.future.2010.10.006
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:kramach@csd.uwo.ca
http://dx.doi.org/10.1016/j.future.2010.10.006


K. Ramachandran et al. / Future Generation Computer Systems 28 (2012) 854–860 855

Fig. 1. Architecture of the system.

Fig. 2. Client-software components.

to be executed. A client that needs resources to run its tasks makes
the request through a job server. A job server executes the resource
selection algorithm to find one or more peers and submits the job
to selected peers. Information about each job is stored in the job
server. A job server can be associated with an organization or with
a division of the organization or some other logical units. Thus
there can be multiple job servers. The job servers do not maintain
information about resources.

Amonitoring server is used tomonitor the jobs submitted by the
job servers. There may be multiple monitoring servers associated
with a job server. During a job’s execution, the mobile agent
associated with that job sends the status of execution (percentage
that is completed) to the monitoring server at a frequency that is
predefined when the job is assigned to a resource. The results of
a job are sent to a result server. The inputs for the mobile agent
associated with the job includes the monitoring server and the
result server addresses.

A single centralmanagement server can be used to authenticate
the job servers in the system, so as to avoid non-authorized servers
sending jobs to the resources.

2.2. Client software

Each peer has software installed on it. Instances of the software
form a self-organizing network in which the resource discovery is
fully distributed across the network.

The client software (Fig. 2) consists of the following compo-
nents:

1. Communication layer. The communication layer provides the
API for the other layers (Resource Discovery, Code Executor,
Monitoring Engine) to send/receive messages with other
instances of the client software (peers) and the servers. It is also
responsible for the bootstrapping of a client. Bootstrapping is

themechanism throughwhich a peer joins the P2P network [9].
This involves finding a member in a network, before joining the
network.

2. Resource discovery. Resource discovery is done by querying
the P2P network for a resource (machine) with particular
<attribute_name, attribute_value> pairs associated with it.
The query is broadcasted within the P2P network. Software
on the matching resources respond to the peer from which
the query originated. From the replies received, a specified
number of resources are selected. This number is indicated by
system parameter: resourceLimit. Each resource is sent a
AreYouIdleFor ‘n’ minutesmessage. The list of selected
peers is input to the resource selection algorithm which is
executed to select the appropriate peer for job execution.

3. Monitoring engine. The monitoring engine module records sys-
tem parameters such as memory usage, CPU usage percentage
and user activity to a datastore (lightweight flat-file database)
within the peer, at a predefined frequency.

The Monitoring Engine is also used when the node is
executing a job. When the machine is interrupted by user
activity, based on the migration policy of the job, it triggers an
event in the Code Executor (explained below), which starts the
migration process.

4. Prediction engine. The data from the local datastore, populated
by the monitoring engine, are used as the dataset for learning
about the system’s behavior.

5. Code executor. The code executor module is responsible for the
execution of the job in the local machine. The code executor
provides a sandbox for the code to execute and protects the
system frommalicious code. The code executor is implemented
by executing the job in a virtual machine [10].

2.3. Work unit

A mobile agent [11] is a software module which moves from
node to node autonomously and is executed at each node to which
it moves. A job is associated with a mobile agent. This is referred
to as a work unit. The mobile agent is responsible for migration,
communicationwith amonitoring server and reporting the results
to a result server. When a machine is interrupted by user activity
while executing the job, instead of terminating the execution, the
state is to be transferred to a newmachine at which the execution
should continue.

2.4. Prediction engine—dedicated and non-dedicated desktops

One of the goals of the volunteer computing architecture is
to optimize the usage of desktop resources. These resources can
be either individually owned (desktop machines in an office) or
used by a group of people (university laboratory machines). In
the case of machines that are individually owned, each machine’s
usage pattern serves as the dataset to predict its availability in the
future. However, in a setup like a university laboratory, where the
machines are not assigned to a single person, the total laboratory’s
usage pattern could also be an important criteria for prediction
along with the individual machine’s usage pattern.

The prediction engine is designed to consider group behavior
for predicting availability. An organization can consist of multiple
groups (e.g., the university can have multiple laboratories). Each
group can have a pattern of resource availability, as can each
resource in a group.

The P2P system is used to classify the network into groups
(g1, g2, . . . , gn) where each group represents a collection of
resources with a common usage pattern (Fig. 3). When a client
requests a resource it searches for a job server. A resource request
query is sent from the job server which we will denote by Rmaster .



Download English Version:

https://daneshyari.com/en/article/424677

Download Persian Version:

https://daneshyari.com/article/424677

Daneshyari.com

https://daneshyari.com/en/article/424677
https://daneshyari.com/article/424677
https://daneshyari.com

