

Imaging the Complications of Lung Transplantation

Clinton Jokerst, MD^{a,*}, Arlene Sirajuddin, MD^b, Tan-Lucien H. Mohammed, MD^c

KEYWORDS

- Lung transplant Computed tomography Anastomotic complications Pleural complications
- Rejection
 Infection

KEY POINTS

- Radiography and computed tomography (CT) are considered workhorse imaging modalities as they are widely available and can detect and characterize most posttransplant complications.
- Within reason, the increased radiation exposure related to CT should be less of a concern in lung transplant patients given their limited long-term survival.
- Anastomotic complications are important but are becoming less common because of improvements in graft preservation, surgical technique, and immunosuppression.
- Grouping complications by their predominant imaging finding and along a timeline including the early, intermediate, and late posttransplant periods can help when generating a differential diagnosis.

INTRODUCTION

With advances in surgical technique and immunosuppressive drug regimens, lung transplantation has become the sole treatment option for patients with a variety of end-stage lung disease. The International Society for Heart and Lung Transplantation (ISHLT) reports that through 2013 nearly 50,000 lung transplants have been performed worldwide.¹ However, long-term survival remains disappointing with only a 5.3-year median survival after transplant, primarily due to complications.² Detecting and treating complications are crucial to improving patient outcomes. The goal of this article is to explore the role of imaging in the diagnosis of lung transplant complications.

IMAGING MODALITIES AND TECHNIQUES

A variety of imaging modalities are available for evaluating lung transplant complications, each having its own unique strengths and weaknesses, which are covered in **Table 1**. Radiography and computed tomography serve (CT) as the workhorse modalities. Although these modalities use ionizing radiation, the risks of radiation-induced malignancy are minimal in this population with limited long-term survival.³

SURGICAL TECHNIQUE

Single lung transplant (SLT) is performed through a lateral thoracotomy. The lung to be removed is deflated and mobilized; the hilar structures are transected; the donor lung replaces the lung. The graft is implanted with 3 anastomoses, which are performed in their posterior-to-anterior anatomic sequence: bronchus, pulmonary artery, and pulmonary veins-left atrium. The surgical technique used for double lung transplants (DLTs) is the bilateral sequential operation, which is done through a

- ^a Department of Radiology, Mayo Clinic Arizona, 13400 E. Shea Blvd, Scottsdale, AZ 85259, USA; ^b Department
- of Medical Imaging, University of Arizona, College of Medicine, 1401 E University Blvd, Tucson, AZ 85721, USA; ^c Department of Radiology, University of Florida Gainesville, College of Medicine, P.O. Box 100215, Gainesville, FL 32610, USA
- * Corresponding author. E-mail address: clintjokerst@gmail.com

Radiol Clin N Am 54 (2016) 355–373 http://dx.doi.org/10.1016/j.rcl.2015.09.014 0033-8389/16/\$ – see front matter © 2016 Elsevier Inc. All rights reserved.

Disclosure: The authors of this article do not have any relevant financial disclosures.

Imaging modalities: strengths and weaknesses			
Imaging Modality	Indications	Strengths	Weaknesses
Chest radiography	 Evaluation of lines/ tubes Evaluation of effusion, pneumothorax Limited evaluation of interstitial and airspace disease 	 Inexpensive Quick Can be done portably 	 Subtle findings of infection and rejection not well evaluated Only secondary signs of vascular complications visible
CT and CT angiography	 Evaluation of lung parenchyma, interstitium, airways, and pleura Evaluation of vessels with addition of intravenous contrast 	 Excellent resolution Short examination time Exhalation images can evaluate air trapping, bronchomalacia Direct evaluation of vascular structures 	 Expensive (relative to CXR) Cannot be performed portably
MR imaging and MR angiography	 Evaluation of vascular complications Evaluation of fluid collections 	 No radiation Superior tissue characterization 	 Expensive Long examination times Inability to image pa- tients with claustro- phobia and certain implantable devices
Ventilation/perfusion scintigraphy	 Evaluation of quantita- tive lung function Evaluation for pulmo- nary embolism 	 Can obtain split pul- monary functional analysis 	 Time consuming Interpretation can be difficult, especially in the early posttrans- plant period
PET CT	 Diagnosis and staging PTLD and other malignancies 	 Helpful in staging and monitoring response to treatment 	 Expensive Limited availability Long examination times
Ultrasound	 Evaluation of pleural fluid, fluid collections 	InexpensiveCan be done portably	 Has a limited role, aside from evaluating pleural fluid

Abbreviations: CT, computed tomography; MR, magnetic resonance; PTLD, posttransplant lymphoproliferative disorder.

clamshell incision with transverse sternotomy; it otherwise uses the same technique as SLT, just applied to both lungs sequentially.^{4,5}

The bronchial anastomosis is most prone to complications due to disruption of bronchial arterial blood supply. A variety of modifications have been performed in an attempt to reduce complications. One of the more common is the telescoping anastomosis.⁶ With improving surgical techniques and immunosuppression, many surgeons now favor the end-to-end anastomosis with a tissue wrap.⁷ Telescoping anastomosis is still used at some centers, especially when there is size discrepancy between the native bronchus and the allograft bronchus.⁶

RELEVANT ANATOMY

Most serious posttransplant complications occur within the graft.² Knowledge of relevant pulmonary

anatomy helps the radiologist understand the imaging findings. The authors break pulmonary anatomy down into 3 compartments: airways, airspaces, and interstitium.

Airways

Airways within the graft constitute the conducting zone, which conveys gas to and from the airspaces. They are made up of bronchi, bronchioles, and terminal bronchioles.⁸ Common findings directly visible on imaging include bronchiectasis and bronchial wall thickening. Bronchiolar disease can be inferred based on the presence of air trapping.

Airspaces

Airspaces make up the respiratory zone where gas exchange takes place. They contain respiratory

Download English Version:

https://daneshyari.com/en/article/4246969

Download Persian Version:

https://daneshyari.com/article/4246969

Daneshyari.com