
Future Generation Computer Systems 27 (2011) 476–485

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Verifying a delegation protocol for grid systems
Benjamin Aziz a,∗, Geoff Hamilton b

a School of Computing, University of Portsmouth, Portsmouth, UK
b School of Computing, Dublin City University, Dublin, Ireland

a r t i c l e i n f o

Article history:
Received 9 August 2010
Received in revised form
7 December 2010
Accepted 9 December 2010
Available online 17 December 2010

Keywords:
Delegation
Security
Protocol verification
Static analysis
Grid

a b s t r a c t

In this paper, we design a non-uniform static analysis for formally verifying a protocol used in large-
scale Grid systems for achieving delegations from users to critical system services. The analysis reveals a
few shortcomings in the protocol, such as the lack of token integrity and the possibility of repudiating
a delegation session. It also reveals the vulnerability of non-deterministic delegation chains that was
detected as a result of adopting amore precise analysis, which allows formore participants in the protocol
than the original protocol designers envisaged.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

DToken is a lightweight delegationprotocol [1] that has recently
been proposed as one solution for the problem of delegation from
users to software services and resources in large-scale Grid sys-
tems. Grid middleware systems, such as Globus1 or GLite,2 allow
users to access the computational and storage resources of the
Grid. A typical model of Grids is often called Virtual Organisations,
which permits users from one organisation to access and use re-
sources belonging to another organisation under certain resource
sharing policies. However, such cross-organisational provisioning
of resources requires that critical issues of trust and security be
managed. One issue is related to delegations performed by the user
to the gateway, and within the system on behalf of the user’s orig-
inal delegation.

Applying analysis techniques is one means by which critical
services, such as a delegation service, can be verified and vali-
dated against vulnerabilities and incorrect usage therefore increas-
ing the levels of confidence in the overall system functionality. In
this paper, we apply formal analysis techniques that we previously
developed in [2–5] to verify the DToken protocol against certain
core properties expected to hold in any robust delegation proto-
col.We show, through our analysis, that properties like basic token

∗ Corresponding author.
E-mail address: benjamin.aziz@port.ac.uk (B. Aziz).

1 www.globus.org.
2 glite.web.cern.ch.

integrity validation, verifiable non-repudiation and deterministic
delegation chains actually do not hold in the protocol. Our non-
uniform analysis allows for different vulnerabilities to be discov-
ered at different levels of abstraction. Indeed, the lowest level of
abstraction (i.e. the most precise analysis) demonstrates a vulner-
ability, the lack of deterministic delegation chains,whichwas over-
looked in the original design of the protocol as a result of adopting
approaches which were too abstract.

In the rest of the paper, we give an overview of the DToken
protocol in the next Section 2 anddiscuss three essential properties
that we expect to hold of this protocol. In Section 3, we define
the simple applied pi calculus language and give its operational
semantics. In Section 4, we define a non-standard semantics that
captures name substitutions as a result of communications, and in
Section 5, we introduce a computable approximation of this non-
standard semantics. In Section 6, we revisit the DToken protocol
applying our static analysis to it. Finally, in Section 7, we discuss
related work and in Section 8, we conclude the paper.

2. The delegation protocol

We give an overview here of the DToken delegation protocol as
was defined in [1]. The protocol comprises secure communications
between a Delegator, Dor , and a Delegatee, Dee. The following
sequence of messages describes the interactions in the protocol:

1. Dor → Dee: CDor , CDee, Vfr , Vto, TS, PDor→Dee,
DSDor→Dee0, SigDor→Dee

2. Dee → Dor: CDor , CDee, Vfr , Vto, TS, PDor→Dee,
DSDor→Dee, SigDor→Dee, SigDee→Dor , CDorCAs

0167-739X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2010.12.003

http://dx.doi.org/10.1016/j.future.2010.12.003
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:benjamin.aziz@port.ac.uk
http://www.globus.org
http://glite.web.cern.ch
http://dx.doi.org/10.1016/j.future.2010.12.003

B. Aziz, G. Hamilton / Future Generation Computer Systems 27 (2011) 476–485 477

Fig. 1. DToken chained delegation through a gateway (cited from [1, Figure 5]).

where,

CDor : Long-term public key identity certificate of Dor ,
CDee: Long-term public key identity certificate of Dee,
Vfr : The starting validity date of the delegation,
Vto: The expiry date of the delegation,
TS: A timestamp representing the time the message is gener-
ated,
PDor→Dee: The delegated permissions from Dor to Dee, which in-
clude the delegation policies,
DSDor→Dee: A number representing the delegation session iden-
tifier,
DSDor→Dee0: Initial empty value of DSDor→Dee, which for simplic-
ity is assumed to be Null,
SigDor→Dee: The signature of the delegation information in the
first message signed by the private key of Dor, KDor , where

SigDor→Dee
def
= |{CDor , CDee, Vfr , Vto, TS, PDor→Dee,

DSDor→Dee0}|KDor ,

SigDee→Dor : The signature of Dor ’s signature in the first mes-
sage signed by the private key of Dee, KDee, where SigDee→Dor

def
=

|{SigDor→Dee}|KDee , and
CDorCAs : The list of subordinate CAs linking CDor to the trusted
root authority.

There are a few points to note about the protocol as described
in [1]. In the first message, DSDor→Dee has an empty value, which
we assume to be some default value like Null. The choice of the
delegatee’s decision to assign the delegation session identifier
rather than the delegator was not explained by the designers
of the protocol. Timestamps in both messages are neglected in
our analysis, as these are often non-reliable means of sequencing
events in distributed systems due to the problem of clock
synchronisation.

The second message is referred to as the DToken (Delegation
Token) fromDor toDee, written asDTDor→Dee, which represents the
mutual delegation agreement between Dor and Dee. In this mes-
sage, Dee will update the value for DSDor→Dee assigning it the cur-
rent delegation session identifier. Furthermore, in between the two
messages, Dee performs some verification tests to ensure that Dor
is authorised to delegate permissions to Dee and to ensure that the
security information Dor has sent in the first message is indeed
valid. For example, Dee will ensure that the certificates are valid
and can be traced up to the root of trust and that the token has not
expired.

Another main assumption in the protocol is that all the com-
munications between Dor and Dee are carried over Secure Sockets
Layer (SSL)-based channels [6]. This means that Dor and Dee are
sure of each others identities and the privacy of messages is guar-
anteed against external intruders. However, communication secu-
rity does not imply that such external intruders cannot participate
in the protocol like any other agents.

The protocol is claimed to form chains of delegation. Once the
last delegatee in the delegation chain decides to stop delegating,
it is assumed that it will execute the delegated permissions,
PDor→Dee, by applying them to aDelegation Enforcement Point (DEP),
typically a service or a resource. The DEP will perform a couple of
validation steps to check the integrity of the DToken containing the
permissions and other DTokens forming the full delegation chain.

In [1], the authors give an example of a delegation chain in Grid
systems as shown in Fig. 1.

This chain consists of the user as the delegation root, who then
delegates some permissions to run a job to a gateway (a computer
on which the user can login). Then the gateway delegates the job
to a job queueing system, which itself is the end of the delegation
chain. The job queueing system will then execute the job on a
file system (the DEP). One aspect of the communication between
the job queueing system and the file system is that the DTokens
generated in the previous communications are passed as a set. We
demonstrate later how this aspect introduces a vulnerability in the
protocol.

2.1. Protocol properties

The DToken protocol was designed to achieve lightweight
delegation focusing on the traceability of the participants rather
than their privacy (in contrast to protocols such as [7]), therefore,
it should sustain a few properties related to its purposes and
functionality.

2.1.1. DToken integrity
This property refers to the success of a DEP in validating the

integrity of a DToken. This implies that the two hash comparisons
mentioned in Section IV in [1] must always succeed.

Property (DToken Integrity Validation). A DToken is said to be valid
if the following equations are true:

hash(CU , CG, Vfr , Vto, TS, PU→G,DSU→G) = decrypt(SigU→G, CU)

hash(SigU→G) = decrypt(SigG→U , CG). �

The first of these compares the hash of the delegation informa-
tion to the decryption of the signature of the delegator. The success
of this validation implies the consent of the delegator to the dele-
gation. The second compares the hash of the delegator’s signature
with the decryption of the delegatee’s signature. This second val-
idation implies the consent of the delegatee to the delegation. In
general, the success of both comparisons ensures that theDToken’s
integrity is preserved.

2.1.2. Traceability and accountability
Traceability is defined in [1] as the ability of the delegatee to

uniquely identify the identity of any of the previous delegators.
Accountability, on the other hand, is verifiable traceability where
such identity is cryptographically identifiable. Accountability is
also called non-repudiation. More specifically, we define non-
repudiation as the property that neither the delegator nor the
delegatee can deny their acceptance of the delegation at the point
of permission execution. This implies further that the delegatee
must not be able to use the delegated permissions before at least
having signed the DToken containing those permissions initiated
by the delegator.

Formally, we define the property of verifiable non-repudiation
as follows, assuming Perms is the set of all permissions.

Download English Version:

https://daneshyari.com/en/article/424697

Download Persian Version:

https://daneshyari.com/article/424697

Daneshyari.com

https://daneshyari.com/en/article/424697
https://daneshyari.com/article/424697
https://daneshyari.com

