
Future Generation Computer Systems 65 (2016) 1–9

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

You can’t touch this: Consumer-centric android application
repackaging detection

Iakovos Gurulian ∗, Konstantinos Markantonakis, Lorenzo Cavallaro, Keith Mayes
Information Security Group, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW20 0EX, United Kingdom

h i g h l i g h t s

• We propose an application store agnostic repackaging detection method.
• Detection based on elements that an attacker is reluctant to significantly alter.
• 91% detection rate on real repackaged applications.
• Detection of repackaged applications that clone original application’s name and icon.
• Detection of repackaged applications that only clone the application name and icon.

a r t i c l e i n f o

Article history:
Received 16 September 2015
Received in revised form
19 May 2016
Accepted 22 May 2016
Available online 30 May 2016

Keywords:
Android
Application repackaging
User-centric security
User privacy
Effectiveness analysis
Electronic fraud

a b s t r a c t

Application repackaging is a widely used method for malware distribution, revenue stealing and
piracy. Repackaged applications are modified versions of original applications, that can potentially
target large audiences based on the original application’s popularity. In this paper, we propose an
approach for detecting repackaged applications. Our approach takes advantage of the attacker’s reluctance
to significantly alter the elements that characterise an application without notably impacting the
application’s distribution. These elements include the application’s name and icon. The detection is
initiated from the client side, prior to an application’s installation, making it application store agnostic.
Our experimental results show that detection based on our algorithm is effective and efficient.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

One of themajor challenges for amalicious user is to get amali-
cious application distributed to a substantial population of genuine
users. On the Android platform, 86% of all malware distribution
relies on repackaged applications [1]. In the context of this paper,
we define repackaged applications as applications that imperson-
ate a genuine application, by slight modifications/variations to the
genuine application’s artwork and/or changes to its source code in
a way that the repackaged application looks and/or feels like the
genuine application. The main objective of a repackaged applica-
tion is to mimic a genuine application so it can target novice users
that gravitate towards the popularity/functionality of the genuine
application. In this definition, we do not include applications that

∗ Corresponding author.
E-mail address: Iakovos.Gurulian.2014@live.rhul.ac.uk (I. Gurulian).

infringe the potential intellectual property of the original applica-
tion and present themselves as unique/different applications.

Repackaged applications are a serious threat and are part of
the OWASP’s Top Ten Mobile Risks for 2014 [2], posing the first
and only threat in the list related to malware distribution. Many
different methods for detection of repackaged applications have
been proposed, but most of them rely on the application stores to
perform the detection [3–10] (Section 2.2).

In this paper we propose a method for detecting repackaged
applications, initiated on the client side, prior to an application’s
installation. The target application is being checked against a
database of legitimate applications, hosted by a trusted third party
(TTP). If it does not exist in the database, string and image similarity
algorithms are used to detect original applications with similar
name and icon pairs (Section 3). These two elements characterise
an application prior to its installation. An attacker who wants to
increase the spreading rate of a repackaged application by taking
advantage of the already established popularity of an original
application might not be likely to alter these elements.

http://dx.doi.org/10.1016/j.future.2016.05.021
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.05.021
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.05.021&domain=pdf
mailto:Iakovos.Gurulian.2014@live.rhul.ac.uk
http://dx.doi.org/10.1016/j.future.2016.05.021


2 I. Gurulian et al. / Future Generation Computer Systems 65 (2016) 1–9

Our experimental results have shown that the proposed
mechanism is both effective and efficient in detecting repackaged
applications (Section 5). Furthermore, in comparison to existing
methods, our proposal scored high on a set of predefined criteria
(Section 5.3).

The main contributions of this work are:

• A method for detecting repackaged applications, based on
elements that an attacker cannot significantly alter without
substantially minimising the attack potential. The method was
designed to be fast and application store agnostic, so that the
detection process can be initiated from the client side, prior to
an installation.

• We were capable of detecting applications that only copy the
name and the icon of an original application in order to trick
the users into installing them. This is a known technique that
attackers use [11], but to our knowledge, we are the first to
effectively detect such applications.

2. Application repackaging

Android applications come in .apk containers (basically .zip
files). These containers include the application’s bytecode, re-
sources and libraries, as well as a folder (named META-INF) that
holds the signature(s), generated by the developer, on different el-
ements of the respective application. An attacker that repackages
an application can modify its bytecode, alter its resources and li-
braries, and then remove the META-INF folder and sign the appli-
cation with his/her own key.

EachAndroid application has a package name that is used by the
operating system as the differentiator factor between applications.
If an application that is about to be installed shares the same
package namewith an already installed one, Android will perceive
it as an update attempt on the last. The update process cannot
continue, unless the signatures of the two applications match.

2.1. Threats to the Android ecosystem

The threats posed by application repackaging can be separated
into those concerning the application developer and those
concerning the user.

2.1.1. Threats to the developer
Developers are given the opportunity to gain financial profit

through their applications. Repackaged applications pose a threat
to them in various ways.

• Unauthorised redistribution: An attacker can redistribute an
application, signed with his/her own signature and possibly
sell it in an application store, without the original developer’s
permission.

• Advertisements: Potential revenue from an application might
be redirected to the attacker, as he/she might have altered the
developer’s account with his/her account, thus receiving the
advertisement revenue.

• Cracking (Piracy): Application repackaging might distribute
pirated copies of a genuine paid application, by bypassing any
implemented verification and validation mechanisms.

2.1.2. Threats to the user
Repackaged applications that aim to harm the user can achieve

their goal in two different ways.

• Trojan horse: A repackaged application could act as a Trojan
horse. Malicious code can be implanted in the original
application, capable of intruding the platform’s security and
the user’s privacy. For example, repackaging an application that
requires permissions to access the Internet and the device’s
storage can allow an attacker to steal the user’s images.

• Denial of upgrade: A repackaged application will not be updated
by a genuine application’s update. Therefore, the user will not
be able to upgrade, once a repackaged application has been
installed.

2.2. Related works

AndroGuard was proposed by Desnos and Gueguen [3]. Their
proposal is based on Control Flow Graphs, used to measure the
similarity between applications.

Crussell et al. proposed DNADroid that uses Program Depen-
dency Graphs to detect similar applications [4]. The authors claim
that their system produces a low false positive rate. However, they
accept that advanced obfuscation techniques can go undetected.
To increase the system’s performance, they only compare the ap-
plication in question against applications with similar names.

Zhou et al. used Fuzzy Hashing for repackaging detection [5].
This method is based on generating a hash of the application by
breaking it down into small chunks and combining their hashes.
They also remove string operands that can easily be altered from
the instructions prior to hashing, in order to prevent common
obfuscation techniques. They have created an application called
DroidMOSS. They state that although their system is very robust,
detection may fail if big chunks of code have been added to the
original application.

Another solution, proposed by Hanna et al., introduces the idea
of Feature Hashing for the detection of similar applications [6]. For
this purpose, a tool called Juxtapp was created, that according to
the authors is resilient to some amount of obfuscation.

Zhauniarovich et al. [7] proposed detection of repackaged
applications based on the contents of the .apk file. Their
method showed results similar to those of techniques that involve
code analysis. SHA1 is used for the comparison of all the files
between different applications. A repackaged application with
slight changes on many files might go undetected. The authors
propose a combination of their methodwith code analysis in order
to overcome this issue.

A framework capable of measuring the obfuscation resilience
of algorithms used in repackaging detection programs was also
proposed in 2013 by Huang et al. [12]. Other researchers have also
proposedmethods for detection of repackaged applications aswell,
or have investigated the subject [8–10].

Due to the computational complexity of the methods discussed
above, they are only meaningful on an application store level. For
this reason, Zhou et al. [13] proposed client side initiated repack-
aging detection, with AppInk. Their method uses application wa-
termarking in order to confirm the authenticity of an application.
In order to achieve that, a few additional steps have to be taken by
the developer in order to embed the watermark.

3. Proposed solution

We propose a repackaging detection technique that takes
advantage of the attacker’s reluctance to significantly alter
elements that characterise an application, without substantially
minimising the attack vector. The data that characterises an



Download English Version:

https://daneshyari.com/en/article/424733

Download Persian Version:

https://daneshyari.com/article/424733

Daneshyari.com

https://daneshyari.com/en/article/424733
https://daneshyari.com/article/424733
https://daneshyari.com

