
Future Generation Computer Systems 65 (2016) 46–56

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Flame-MR: An event-driven architecture for MapReduce applications
Jorge Veiga ∗, Roberto R. Expósito, Guillermo L. Taboada, Juan Touriño
Grupo de Arquitectura de Computadores (GAC), Departamento de Electrónica e Sistemas, Facultade de Informática, Universidade da Coruña, Campus de A
Coruña, 15071 A Coruña, Spain

h i g h l i g h t s

• Description of Flame-MR, a new MapReduce framework that improves the performance and resource efficiency of Hadoop.
• Flame-MR keeps Hadoop API compatibility in order to avoid source code modifications.
• Performance comparison with Hadoop-based frameworks using representative workloads on an HPC cluster and a cloud platform.
• Flame-MR reduces Hadoop execution times by up to 34% for the selected micro-benchmarks and 54% for the application benchmarks.

a r t i c l e i n f o

Article history:
Received 4 February 2016
Received in revised form
27 April 2016
Accepted 9 June 2016
Available online 17 June 2016

Keywords:
Big Data
MapReduce
Hadoop
Event-driven architecture
Cloud computing

a b s t r a c t

Nowadays, many organizations analyze their data with the MapReduce paradigm, most of them using
the popular Apache Hadoop framework. As the data size managed by MapReduce applications is steadily
increasing, the need for improving the Hadoop performance also grows. Existingmodifications of Hadoop
(e.g., Mellanox Unstructured Data Accelerator) attempt to improve performance by changing some of
its underlying subsystems. However, they are not always capable to cope with all its performance
bottlenecks or they hinder its portability. Furthermore, new frameworks like Apache Spark orDataMPI can
achieve good performance improvements, but they do not keep compatibility with existing MapReduce
applications. This paper proposes Flame-MR, a new event-driven MapReduce architecture that increases
Hadoop performance by avoiding memory copies and pipelining data movements, without modifying
the source code of the applications. The performance evaluation on two representative systems (an
HPC cluster and a public cloud platform) has shown experimental evidence of significant performance
increases, reducing the execution time by up to 54% on the Amazon EC2 cloud.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the last several years, organizations have been using Big
Data applications to extract valuable information from the huge
data sets they manage. Many of these applications use the popular
MapReduce programming model [1–3], which was first proposed
by Google in [4]. The MapReduce paradigm allows high scalability
and transparent parallelization bymeans of two explicit functions:
Map and Reduce. Another important phase is data copy (also
known as shuffle), which transfers intermediate data between
mappers and reducers in a many-to-many fashion. Nowadays,
Apache Hadoop [5], an open-source Java-based implementation
of MapReduce, has become the de-facto standard framework for
large-scale data processing.

∗ Corresponding author. Tel.: +34 881 011 212; fax: +34 981 167 160.
E-mail addresses: jorge.veiga@udc.es (J. Veiga), rreye@udc.es (R.R. Expósito),

taboada@udc.es (G.L. Taboada), juan@udc.es (J. Touriño).

As the capabilities demanded by Big Data applications in-
crease continuously, the need for an efficient MapReduce frame-
work has been growing, leading to a continuous refinement of the
Hadoop implementation. However, someperformance bottlenecks
of Hadoop are caused by its underlying design. In order to over-
come these limitations, previous works [6,7] have been mainly
focused on modifying certain Hadoop subsystems (e.g., network
communications, memory usage, I/O operations) to obtain better
performance and scalability. These modifications keep compati-
bility with Hadoop APIs and so existing applications do not have
to be rewritten. The main problem of this approach is that some
design decisions remain in the core of the framework, affecting
its performance. Another important issue is portability, as some
of these modifications are written in other languages than Java
(e.g., C, C++) or make certain assumptions (e.g., memory hierarchy
features) about the systemwhere they are being run. Furthermore,
other options [8] involve replacing Hadoop with another frame-
work, which implies changes in the source code of the applica-
tions. This is not always feasible for organizations that already have

http://dx.doi.org/10.1016/j.future.2016.06.006
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.06.006
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.06.006&domain=pdf
mailto:jorge.veiga@udc.es
mailto:rreye@udc.es
mailto:taboada@udc.es
mailto:juan@udc.es
http://dx.doi.org/10.1016/j.future.2016.06.006


J. Veiga et al. / Future Generation Computer Systems 65 (2016) 46–56 47

manyMapReduce applications in production or do not have access
to their source code.

This paper introduces Flame-MR, a new event-driven design
and implementation of the MapReduce model that enhances
Hadoop in terms of memory efficiency, overlapping of the data
flow between phases and leveraging of the computing resources.
Furthermore, it ensures portability and full compatibility with
existing applications. The main goal of Flame-MR is to provide
the organizations a zero-effort way to decrease the execution
time of their MapReduce workloads without having to modify or
recompile their source code.

The rest of this paper is organized as follows: Section 2
introduces the related work. Section 3 describes the overall design
and architecture of Flame-MR. Section 4 analyzes the performance
evaluation of Flame-MR using several representative MapReduce
workloads. Finally, Section 5 summarizes our concluding remarks
and proposes future work.

2. Related work

The broad adoption of the Apache Hadoop project has caused
the appearance of several MapReduce frameworks that attempt to
improve its performance. Most of themmodify some of its subsys-
tems, like network communications or disk I/O, to adapt them to
specific environments. That is the case of Mellanox Unstructured
Data Accelerator (UDA) [9] and RDMA-Hadoop [10], which adapt
Hadoop to High-Performance Computing (HPC) resources, such as
Remote Direct Memory Access (RDMA) interconnects like Infini-
Band (IB). On the one hand,MellanoxUDA is a pluginwritten in C++
which combines an RDMA-based communication protocol along
with an efficient merge-sort algorithm based on the network lev-
itated merge [7]. On the other hand, RDMA-Hadoop redesigns the
network communications to take full advantage of RDMA inter-
connects, while performing data prefetching and caching mech-
anisms [6]. RDMA-Hadoop incorporates these modifications in a
Hadoop distribution which is available separately. Both Mellanox
UDA and RDMA-Hadoop keep compatibility with the user inter-
faces. However, they only modify certain Hadoop subsystems,
which can lead to limited performance improvements compared
to an overall redesign of the Hadoop underlying architecture.

Another modification of Hadoop is NativeTask [11], which
rewrites some of its parts using C++, like task delegation andmem-
ory management. Furthermore, it takes into account the cache hi-
erarchy to redesign the merge-sort algorithm [12]. However, the
optimizations performed by NativeTask are highly dependent on
the underlying system,whichhinders its portability. This is also the
case of Main Memory MapReduce (M3R) [13], which uses the X10
programming language [14] to implement an in-memory MapRe-
duce framework that keeps compatibility with Hadoop APIs. An-
other important drawback of M3R is that the workload has to fit in
memory, preventing its use for real-world Big Data scenarios.

The performance bottlenecks of Hadoop have caused the emer-
gence of new frameworks that fully replace the Hadoop imple-
mentation. One of them is DataMPI [8], which makes use of
the Message-Passing Interface (MPI) [15] to leverage the high-
performance interconnects that are usually available in HPC sys-
tems. MapReduce Implementation Adapted for HPC Environments
(MARIANE) [16] is designed to take advantage of the General Par-
allel Filesystem (GPFS), which is also commonly found in HPC sys-
tems. Other solutions, like Spark [17] and Flink [18], optimize the
memory usage by using collections of elements as an alternative
to key–value pairs. Both expand the set of operations available to
the end user, rather than providing onlymap and reduce functions.
Themain problemwith this kind of frameworks is that they do not
provide full compatibility with Hadoop APIs, so the code of the ap-
plications must be adapted or even rewritten from scratch.

Our previous work in [19] evaluated multiple MapReduce
frameworks on an HPC cluster, providing some insights into their
performance that have been used as a basis for developing Flame-
MR. Unlike other frameworks, Flame-MR redesigns completely the
Hadoop architecture in order to improve its performance and scal-
ability while keeping compatibility with Hadoop APIs. Further-
more, its Java-based implementation ensures its portability.

3. Flame-MR design

This section presents the overall design of Flame-MR. First,
the main characteristics of its internal architecture are discussed
in Section 3.1. Second, Section 3.2 describes in more detail the
different phases of the MapReduce data processing pipeline in this
architecture.

3.1. Flame-MR architecture

Flame-MR is a distributed processing framework implemented
in ‘‘pure’’ Java code (i.e., 100% Java) for executing standard MapRe-
duce algorithms. Being fully integrated with the Hadoop ecosys-
tem, Flame-MR runs on Yet Another Resource Negotiator (YARN),
which is its resource management layer, and uses the Hadoop Dis-
tributed File System (HDFS) [20] for data storage. Its design is ori-
ented to optimize the performance of the overall MapReduce data
processing, improving the utilization of the system resources (CPU,
memory, disk and network) and the overlapping of the data flow.
Moreover, the architecture of Flame-MRhas a strong flexibility due
to the use of the same software interfaces to manage in-memory
data, network communications and HDFS I/O. Flame-MR acts as
a plugin that is fully compatible with Hadoop APIs, so existing
MapReduce applications do not have to be rewritten.

The Flame-MRworkflow is composed of the classic MapReduce
phases: input, map, sort, copy, merge, reduce and output. The
input phase reads the input data set from HDFS and the map
phase extracts the valuable information by applying the user-
defined map function to each input pair. Once the map output
is generated, the sort phase ensures the correct ordering of the
output pairs, which are sent through the network during the copy
step. The merge phase generates the reduce input by merging all
the incomingmap output pairs. Next, the reducer applies the user-
defined reduce function to each set of key–value pairs, computing
the final output which is written to HDFS in the output step. In
Hadoop, one ormore phases are performed for a certain part of the
input data set by independent Java processes called tasks (e.g., a
map task performs the input, map and sort phases). However,
Flame-MR arranges the phases into MapReduce operations, which
are logical processing units performed by a Java thread. Unlike
Hadoop, these operations are executed within the same Java
process (from now on, Worker). For a given data input, each
operation performs some of the explained phases depending on
its operation type (map, merge or reduce), as will be described in
Section 3.2.

Fig. 1 presents a high-level overview of the Flame-MR
architecture, which is based on a traditional master–slave model.
This model has been adapted to Hadoop YARN, in which the
master and the slaves are executed inside YARN containers. At
the application launching, the master container (AppMaster in
the figure) allocates one or more Workers per computing node
in the cluster as configured by the user. In the same way, the
user configures the CPU cores and memory allocated to each
YARN container, which in turn determines the resources available
for the Workers. The configuration of the Workers (i.e., number
of Workers per node and resources available for the Worker)
provides higher flexibility than the Hadoop model, in which each
map/reduce task is allocated in a separate container depending



Download English Version:

https://daneshyari.com/en/article/424736

Download Persian Version:

https://daneshyari.com/article/424736

Daneshyari.com

https://daneshyari.com/en/article/424736
https://daneshyari.com/article/424736
https://daneshyari.com

