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a b s t r a c t

In scientific cloud workflows, large amounts of application data need to be stored in distributed data cen-
tres. To effectively store these data, a data manager must intelligently select data centres in which these
data will reside. This is, however, not the case for data which must have a fixed location. When one task
needs several datasets located in different data centres, the movement of large volumes of data becomes
a challenge. In this paper, we propose a matrix based k-means clustering strategy for data placement in
scientific cloudworkflows. The strategy contains two algorithms that group the existing datasets in k data
centres during the workflow build-time stage, and dynamically clusters newly generated datasets to the
most appropriate data centres – based on dependencies – during the runtime stage. Simulations show
that our algorithm can effectively reduce data movement during the workflow’s execution.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Running scientific workflow applications usually need not only
high performance computing resources but also massive stor-
age [1]. In many scientific research fields, like astronomy [2],
high-energy physics [3] and bio-informatics [4], scientists need to
analyse terabytes of data either from existing data resources or
collected from physical devices. During these processes, similar
amounts of newdatamight also be generated as intermediate or fi-
nal products [1].Workflow technologies are facilitated to automate
these scientific applications. Scientificworkflows are typically very
complex. They usually have a large number of tasks and need a long
time for execution. Nowadays, popular scientificworkflows are de-
ployed in grid systems [3] because they have a high performance
andmassive storage. However, building a grid system is extremely
expensive and it is not available for scientists all over the world to
use.
The emergence of cloud computing technologies offers a new

way to develop scientific workflow systems. Since late 2007 the
concept of cloud computing was proposed [5] and it has been
utilised in many areas with some success [6–9]. Cloud computing
is deemed as the next generation of IT platforms that can deliver
computing as a kind of utility [10]. Foster et al. made a compre-
hensive comparison of grid computing and cloud computing [11].
Some features of cloud computing also meet the requirements of
scientific workflow systems. First, cloud computing systems can
provide a high performance and the massive storage required for
scientific applications in the same way as grid systems, but with
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a lower infrastructure construction cost among many other fea-
tures, because cloud computing systems are composed of data cen-
tres which can be clusters of commodity hardware. Second, cloud
computing systems offer a new paradigm so that scientists from
all over the world can collaborate and conduct their research to-
gether. Cloud computing systems are based on the Internet, and
so are the scientific workflow systems deployed on the cloud.
Dispersed computing facilities (like clusters) at different institu-
tions can be viewed as data centres in the cloud computing plat-
form. Scientists can upload their data and launch their applications
on scientific cloud workflow systems from anywhere in the world
via the Internet. As all the data are managed on the cloud, it is easy
to share data among scientists. Research into doing science on the
cloud has already commenced such as early experiences like the
Nimbus [12] andCumulus [13] projects. Thework byDeelman et al.
[14] shows that cloud computing offers a cost-effective solution for
data-intensive applications, such as scientific workflows [15].
By taking advantage of cloud computing, scientific workflow

systems could gain a wider utilisation; however they will also face
some new challenges, where data management is one of them.
Scientific applications are data intensive and usually need collabo-
rations of scientists from different institutions [16], hence the ap-
plication data in scientific workflows are usually distributed and
very large.When one task needs to process data fromdifferent data
centres, moving the data becomes a challenge [1]. Some applica-
tion data are too large to bemoved efficiently, somemayhave fixed
locations that are not feasible to be moved and some may have
to be located at fixed data centres for processing, but this is only
one aspect of this challenge. For the application data that are flex-
ible to be moved, we also cannot move them whenever and wher-
ever we want, since in the cloud computing platform, data centres
may belong to different cloud service providers so that data move-
ment would result in costs. Furthermore, the infrastructure of the
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Denotations

di dataset
D set of datasets
Di set of datasets in a partition
fdi fixed location dataset
FD set of fixed location datasets
ti workflow task
T set of workflow tasks
Ti set of workflow tasks that will use dataset di
dc i data centre
DC set of data centres
pi partition of datasets
P set of partitions
si size of a dataset
cs size of a data centre
ds size of a partition
ps size of a set of partitions
FP set of partitions that have fixed location datasets
NFP set of partitions that do not have fixed location

datasets
DM dependency matrix
CM clustered dependency matrix
CM i sub clustered dependency matrix
CMT the top sub clustered dependency matrix after one

binary partition
CMB the bottom sub clustered dependency matrix after

one binary partition
GM global measure of BEA transformation
PM global measure of binary partition
depij dependency between datasets di and dj
dc_depij dependency between dataset di and data centre dc j
K set of data centres with placement of datasets
λini initial storage usage parameter of data centres
λmax maximum storage usage parameter of data centres

cloud computing systems is hidden from their users. They just offer
the computation and storage resources required by users for their
applications. The users do not know the exact physical locations
where their data are stored. This kind of model is very convenient
for users, but remains a big challenge for data management to sci-
entific cloud workflow systems.
In this paper, we propose a matrix based k-means clustering

strategy for data placement in scientific cloud workflow systems.
Scientific workflows can be very complex, one task might require
many datasets for execution; furthermore, one dataset might also
be required by many tasks. If some datasets are always used
together by many tasks, we say that these datasets are dependant
on each other. In our strategy, we try to keep these datasets in one
data centre, so that when tasks were scheduled to this data centre,
most, if not all, of the data they need are stored locally.
Our data placement strategy has two algorithms, one for

the build-time stage and one for the runtime stage of scien-
tific workflows. In the build-time stage algorithm, we construct a
dependency matrix for all the application data, which represents
the dependencies between all the datasets including the datasets
that may have fixed locations. Then we use the BEA algorithm [17]
to cluster the matrix and partition it that datasets in every parti-
tion are highly dependent upon each other. We distribute the par-
titions into k data centres, where the partitions have fixed location
datasets are also placed in the appropriate data centres. These k
data centres are initially as the partitions of the k-means algorithm
at the runtime stage. At the runtime, our clustering algorithmdeals
with the newly generated data that will be needed by other tasks.

For every newly generated dataset, we calculate its dependencies
with all k data centres, and move the data to the data centre that
has the highest dependency with it.
By placing data with their dependencies, our strategy attempts

to minimise the total data movement during the execution of
workflows. Furthermore, with the pre-allocation of data to other
data centres, our strategy can prevent data gathering to one data
centre and reduces the time spentwaiting for data by ensuring that
the relevant data are stored locally.
The remainder of the paper is organised as follows. Section 2

presents the related work. Section 3 gives an example and analy-
ses the research problems. Section 4 introduces the basic strategy
of our algorithms. Section 5 presents the detailed steps of the algo-
rithms in our data placement strategy. Section 6 demonstrates the
simulation results and the evaluation. Finally, Section 7 addresses
our conclusions and future work.

2. Related work

Data placement of scientific workflows is a very important and
challenging issue. In traditional distributed computing systems,
much work about data placement has been conducted. In [18], Xie
proposed an energy-aware strategy for data placement in RAID-
structured storage systems. Stork [19] is a scheduler in the Grid
that guarantees that data placement activities can be queued,
scheduled, monitored and managed in a fault tolerant manner.
In [20], Cope et al. proposed a data placement strategy for urgent
computing environments to guarantee thedata’s robustness. At the
infrastructure level, NUCA [21] is a data placement and replication
strategy for distributed caches that can reduce the data’s access la-
tency.However, none of them focuses on reducing thedata’smove-
ment between data centres on the Internet. As cloud computing
has become more and more popular, new data management sys-
tems have also appeared, such as the Google File System [22] and
Hadoop [23]. They all have hidden infrastructures that can store
the application data independent of the users’ control. The Google
File System is designed mainly for Web search applications, which
are different fromworkflowapplications. Hadoop is amore general
distributed file system, which has been used by many companies,
such as Amazon and Facebook. When you push a file to a Hadoop
File System, it will automatically split this file into chunks and
randomly distribute these chunks in a cluster. Furthermore, the
Cumulus project [13] introduced a scientific cloud architecture for
a data centre. And the Nimbus [12] toolkit can directly turn a clus-
ter into a cloud and it has already been used to build a cloud for sci-
entific applications. Within a small cluster, data movement is not
a big problem, because there are fast connections between nodes,
i.e. the Ethernet. However, the scientific cloud workflow system is
designed for scientists to collaborate, where large scale and dis-
tributed applications need to be executed across several data cen-
tres. The data movement between data centres may cost a lot of
time, since data centres are spread around the Internet with lim-
ited bandwidths. In this work, we try to place the application data
based on their dependencies in order to reduce the datamovement
between data centres.
Data transfer is a big overhead for scientific workflows [24].

Though popular scientific workflow systems have their data man-
agement strategies, they do not focus on reducing data movement.
For the build-time stage, these systems mainly focus on the data
modelling methods. For example, Kepler [3] has an actor-oriented
data modelling method that works for large data in a grid environ-
ment, Taverna [4] and ASKALON [25] have their own process defi-
nition language to represent their data flows. For the runtime stage,
most of the scientific workflow systems adopt some data grid sys-
tems for their data management. For examples, Kepler uses the
SRB [26] system, while Pegasus [2] and Triana [27] adopt the RLS
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