
Future Generation Computer Systems 26 (2010) 1226–1240

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

From infrastructure delivery to service management in clouds

Luis Rodero-Merino a,∗, Luis M. Vaquero a, Victor Gil b, Fermín Galán a, Javier Fontán c,
Rubén S. Montero c, Ignacio M. Llorente c
a Telefónica Investigación y Desarrollo, Madrid, Spain
b SUN Microsystems, Regensburg, Germany
c Departamento de Arquitectura de Computadores y Automática, Facultad de Informática, Universidad Complutense, Madrid, Spain

a r t i c l e i n f o

Article history:
Received 15 May 2009
Received in revised form
4 January 2010
Accepted 25 February 2010
Available online 6 March 2010

Keywords:
Cloud computing
Advanced service management
Automatic scalability

a b s t r a c t

Clouds have changed the way we think about IT infrastructure management. Providers of software-based
services are now able to outsource the operation of the hardware platforms required by those services.
However, as the utilization of cloud platforms grows, users are realizing that the implicit promise of clouds
(leveraging them from the tasks relatedwith infrastructuremanagement) is not fulfilled. A reason for this
is that current clouds offer interfaces too close to that infrastructure, while users demand functionalities
that automate the management of their services as a whole unit. To overcome this limitation, we propose
a new abstraction layer closer to the lifecycle of services that allows for their automatic deployment
and escalation depending on the service status (not only on the infrastructure). This abstraction layer
can sit on top of different cloud providers, hence mitigating the potential lock-in problem and allowing
the transparent federation of clouds for the execution of services. Here, we present Claudia, a service
management system that implements such an abstraction layer, and the results of the deployment of a
grid service (based on the Sun Grid Engine software) on such system.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Cloud systems [1,2] have recently emerged as a ‘‘new paradigm
for the provision of computing infrastructure’’ for a wealth of
applications [3–5]. Thus, providers of software-based services,
which we will denote as Service Providers (SP), are freed from
the burden of setting up and managing the hardware and/or
software platforms required by their services. These resources are
provisioned by the cloud platform, offered by a Cloud Provider (CP).
Cloud systems are classified by the kind of resources they offer:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS). Arguably, IaaS systems are the
ones that have raised the greatest interest so far. Many efforts are
devoted to find new business models based on these services; they
all have a key common feature: they try to offer infrastructure as
an utility for SPs to run their software-based systems.
Thanks to IaaS cloud technologies, SPs can quickly arrange

new computing infrastructure in a pay-per-use manner. SPs can

∗ Corresponding address: Telefónica I+D, C/Emilio Vargas 6, C.P.:28043, Madrid,
Spain. Tel.: +34 913374247; fax: +34 913374272.
E-mail addresses: rodero@tid.es (L. Rodero-Merino), lmvg@tid.es

(L.M. Vaquero), victor.gil@sun.com (V. Gil), fermin@tid.es (F. Galán),
jfontand@fdi.ucm.es (J. Fontán), rubensm@dacya.ucm.es (R.S. Montero),
llorente@dacya.ucm.es (I.M. Llorente).

adaptively allocate virtual hardware resources according to their
services’ load: if the load grows, new resources (like Virtual
Machines, VMs) are demanded to avoid a possible service outage,
which would impact on the offered Quality of Service (QoS); when
the load shrinks the SP can release idle resources to avoid paying
for underused equipment.
However, in spite of the obvious advantages that clouds bring,

present IaaS still present important drawbacks. Although the SP’s
main concern is the service lifecycle (deployment, escalation, unde-
ployment), IaaS interfaces are usually too close to the infrastruc-
ture, forcing the SP to manage manually the infrastructure (VMs)
assigned to the service. This can limit the interest of SPs in cloud so-
lutions. They are willing to reduce costs, but without an excessive
administrative burden. Also,many cloudusers are concerned about
vendor lock-in problems due to the lack of standards that hinder
the migration of processes and data among clouds. Hence, there is
still room for evolved cloud systems that implement needed, but
still unaccomplished, enhancements.
In this paper, we propose a new abstraction layer for cloud

systems that offers a more friendly interface to SPs by enabling
the control of the services lifecycle. We also introduce Claudia, our
implementation proposal of such a layer.
The rest of this paper is organized as follows. Section 2 presents

existing solutions and useful standards for implementing a certain
level of automatic scalability control and their limitations. This
section also enumerates the goals to be addressed to enable the

0167-739X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2010.02.013

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:rodero@tid.es
mailto:lmvg@tid.es
mailto:victor.gil@sun.com
mailto:fermin@tid.es
mailto:jfontand@fdi.ucm.es
mailto:rubensm@dacya.ucm.es
mailto:llorente@dacya.ucm.es
http://dx.doi.org/10.1016/j.future.2010.02.013


L. Rodero-Merino et al. / Future Generation Computer Systems 26 (2010) 1226–1240 1227

automatic scaling of services. Section 3 describes the features and
capabilities of Claudia and how it fulfills the challenges above.
Section 4 shows the results of the deployment and execution
of several different scalability use cases controlled by Claudia.
Section 5 indicates ongoing work on some of the challenges
identified with Claudia. Finally, Section 6 emphasized the final
conclusion of the present work.

2. Background and challenges ahead

Existing IaaS providers propose different alternatives to access
to their services, typically based on WSDL or REST protocols:
Amazon API [6], GoGrid’s API [7],1 Sun’s Cloud API [8] or VMware’s
vCloud [9] are some examples. Amazon is extending its core
APIs to provide higher level services, such as Amazon’s Cloud
Watch and AutoScale, that aim to automate the scaling process
of Amazon-deployed VMs. Also, RightScale manages the creation
and removal of VMs according to queues or user-defined hardware
and process load metrics [10]. However, its auto-scaling features
are still very inflexible, since scalability can only be defined in
terms of the variablesmonitored in the server templates RightScale
provides. Hence, the SP cannot use arbitrary service metrics. Also,
it is not possible to set bounds depending on business criteria.
These same limitations are present in similar systems offering
automatic scalability over cloud platforms, such as Scalr [11],
WeoCeo [12], etc. In addition, these lower level APIs are defined
by individual organizations, which could lead to vendor lock-
in problems. Fortunately, initiatives such as the Open Cloud
Computing Interface (OCCI) [13] is an active open standard (based
on RESTful) with wide industrial acceptance (GoGrid, ElasticHost,
FlexiScale, Sun and others). Indeed, some of the paper authors
are OCCI promoters and authors of the first implementation of
the standard.2 Yet, OCCI still lacks service-level primitives to be
invoked that hide the VM-related operation to a SP.
All the solutions above still lack the ability to handle the lifecy-

cle of services. For instance, in order to automatically grow/shrink
the resources used as load varies, they only implement scaling
rules based on infrastructure metrics or, at best, load balancer-
derived data. Consequently, these APIs are well below the abstrac-
tion level required by SPs. They are too close to the machine level,
lacking primitives for defining service-relevant metrics, the scala-
bility mechanisms automatically governing the system, definition
of applicable Service Level Agreements (SLAs), etc. In conclusion,
they do not provide ways for SPs to describe services in a holistic
manner, as they do not offer the appropriate abstraction level.
Due to this limitation, it is not possible to deploy services at

once in one single step. SPs have to install, customize and manage
VMs one by one. Also, as commented above, no CP allows us to de-
fine automatic scalability actions based on custom service metrics.
Thus, to make full use of the scaling capabilities of clouds, SPs have
tomonitor the service status constantly in order to allocate new re-
sources (such as VMs) or release unused ones as required. Besides,
todayno cloudplatformsupports as yet the configuration of certain
business rules, as for example limits on themaximumexpenses the
SP is willing to pay so she does not go bankrupt due for example
to Economic Denial of Sustainability (EDoS) attacks, increasing the
resource consumption and associated bill of a given SP.
Thus, to cope with the full automation requirements that SPs

demand, cloud platforms must evolve from just infrastructure
delivery to automated service management. We identify the four
goals that should drive such evolution:

1 http://www.gogrid.com/downloads/GoGrid-scaling-your-internet-
business.pdf.
2 http://opennebula.org/.

1. Appropriate Service Abstraction Level that provides SPs with
the friendliness needed to define and manage services, in
contrast with the present situation where they have to deal
with individual resources (VMs). A service definition shall
include relationships among components (e.g. deployment
order), and business and scalability rules to be observed.
It should be rich enough so even complex services can be
deployed automatically by the cloud platform. This implies that
the SP has to be allowed to specify, for example, that if a Web
Server and a Database are linked together, then the Database
must be started first.
Besides, users shall be able to define how each VM must be

customized, so the cloud platform knows which configuration
information is to be provided to eachVMat start time, and, thus,
free the SP from that task. Following the previous example, the
Web Server can need the Database location (its IP address) to
contact it, but this can be unknown before deployment time.

2. Automatic Scalability is required to reduce the management
tasks. Full user-defined scalability automation that takes into
account the service status is a missing feature in current IaaS
offerings. The SP will define how the service has to be scaled
using her own experience and knowledge of the service and
the different factors that can impact on its performance. For
example, the SP shall be able to specify that the ratio of database
transactions per database replica should neither be greater than
1000 (to avoid overloading), nor less than100 (to avoid resource
overprovisioning that would impact on the total cost).

3. Smart Scaling is later required to specify the rules that constrain
the automatic scaling. For instance, this feature can prevent
malicious users to make a deployed service grow far beyond
an acceptable risk/cost, by implementing user-defined or
business-based bounds. For example, the SP shall be able to set
bounds on the amount of resources provisioned to avoid that
automatic scaling actions lead to too high costs. On the other
hand, it should be possible for the CP to control the amount
of resources that each SP can demand depending on business
criteria (e.g. users that delay payments will not be allowed to
allocate too many resources).

4. Avoiding Cloud Vendor Lock-in: the increasing number of CPs
and their heterogeneous interfaces together with the lack of
interoperability can lead SPs to be too tied to a particular CP.
Instead, services should be able to run on different CPs. There
is already an important effort going on inside the Distributed
Management Task Force (DMTF) [14] to develop standards
that enable the interoperation of clouds. Also, different clouds
can be combined by using virtual infrastructure manager such
as Eucalyptus [15] or OpenNebula [16–18]. In a way, this
resembles the evolution of grids, where new systems have been
developed [19] to combine (i.e. federate [20]) the capabilities of
different grid execution services.

To reach these goals, we advocate for the addition of a new
abstraction layer on top of the infrastructure clouds’ interfaces that
allows us to control services as a whole, and frees SPs from the
hurdles ofmanually controlling potentially large sets of virtualized
resources. Thiswould change theway that SPs interactwith clouds.
Instead of dealing with the management of hardware resources
on different platforms (as it is shown in Fig. 1(a)), they will
only need to use a single interface for service management (see
Fig. 1(b)), which is closer to the concepts typically managed by
SPs. This new abstraction layer should run on top of a Virtual
Infrastructure Manager (VIM) that enables the utilization of several
clouds with heterogeneous interfaces from different CPs. Here
we present Claudia, our proposal implementation of such layer,
born as part of the EU-funded RESERVOIR project [21]. Parts of its
code will be released as open source (Affero GPL licensing) during
project execution. Also, a proprietary extension of Claudia will be

http://www.gogrid.com/downloads/GoGrid-scaling-your-internet-business.pdf
http://www.gogrid.com/downloads/GoGrid-scaling-your-internet-business.pdf
http://opennebula.org/


Download English Version:

https://daneshyari.com/en/article/424756

Download Persian Version:

https://daneshyari.com/article/424756

Daneshyari.com

https://daneshyari.com/en/article/424756
https://daneshyari.com/article/424756
https://daneshyari.com

