
Future Generation Computer Systems 26 (2010) 1271–1281

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Virtual Organization Clusters: Self-provisioned clouds on the grid
Michael A. Murphy ∗, Sebastien Goasguen ∗∗

School of Computing, Clemson University, 120 McAdams Hall, Clemson, SC 29634-0974, USA

a r t i c l e i n f o

Article history:
Received 14 May 2009
Received in revised form
19 December 2009
Accepted 25 February 2010
Available online 6 March 2010

Keywords:
Grid computing
Cloud computing
Self-provisioning
Autonomic resource management

a b s t r a c t

Virtual Organization Clusters (VOCs) are a novel mechanism for overlaying dedicated private
cluster systems on existing grid infrastructures. VOCs provide customized, homogeneous execution
environments on a per-Virtual Organization basis, without the cost of physical cluster construction or
the overhead of per-job containers. Administrative access and overlay network capabilities are granted
to Virtual Organizations (VOs) that choose to implement VOC technology, while the system remains
completely transparent to end users and non-participating VOs. Unlike existing systems that require
explicit leases, VOCs are autonomically self-provisioned and self-managed according to configurable
usage policies.
The work presented here contains two parts: a technology-agnostic formal model that describes the

properties of VOCs and a prototype implementation of a physical cluster with hosted VOCs, based on
the Kernel-based Virtual Machine (KVM) hypervisor. Test results demonstrate the feasibility of VOCs
for use with high-throughput grid computing jobs. With the addition of a ‘‘watchdog’’ daemon for
monitoring scheduler queues and adjusting VOC size, the results also demonstrate that cloud computing
environments can be autonomically self-provisioned in response to changing workload conditions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Grid systems, such as the Open Science Grid (OSG) [1], enable
different entities to share computational resources using a flexible
and secure framework. These resources enable users to run
computational jobs that exceed the capabilities of the systems
available at any single location. To mitigate compatibility issues
that result from resource heterogeneity, computational grids could
be designed as Service Oriented Architectures, in which grid-
enabled applications do not interact with low-level systems and
resources directly. Instead, these applications communicate with
abstract service libraries, which are built on top of standard
network communications protocols such as TCP and IP. The
services layer acts as a high-level operating system for the
underlying physical resources, providing both abstraction and
arbitration functionality. Since co-scheduling physical resources
across sites is a complex task, such grid services are well-adapted
for High Throughput Computing (HTC) applications, which tend to
be compute-bound and do not require completion deadlines [2].
Virtualization of grid systems has been proposed as a mecha-

nism for providing custom environments to users on grid systems

∗ Principal corresponding author.
∗∗ Corresponding author. Tel.: +1 864 656 2838.
E-mail addresses:mamurph@cs.clemson.edu (M.A. Murphy),

sebgoa@clemson.edu (S. Goasguen).

that expose low-level computational resources as opposed to ser-
vices [3], thereby enabling private clouds to be constructed using
grid computing resources as a hosting utility [4]. Virtualized grid
systems to date have taken the approach that new middleware
should be developed for the leasing of physical resources onwhich
to run virtual containers. The most widely published systems –
Virtual Workspaces [5], In-VIGO [6], and Shirako [7] – all require
the addition of system-specific middleware at both the execution
and submission endpoints. In some cases, these systems require
outright replacement of entire middleware stacks. With such re-
quirements imposed on both the hosting site and the user, these
lease-oriented systems are not transparent and cannot be easily
deployed in a non-disruptive fashion. In contrast, a completely au-
tonomic system would adapt to changing workloads and resource
availability, without requiring manual intervention by either the
user or system administrators [8].
The system presented here is a clustering overlay for individ-

ual grid resources, which permits Virtual Organizations of fed-
erated grid users to create custom computational clouds with
private scheduling and resource control policies. This system is
designed according to a specification known as the Virtual Orga-
nization Cluster Model, which stipulates the high-level proper-
ties and constraints of Virtual Organization Clusters. This model is
technology-agnostic, permitting the use of different virtualization
technologies, networking systems, and computational grids. A pro-
totype cluster designed according to the model demonstrates that
a viable implementation of the VOC specification is possible.

0167-739X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2010.02.011

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:mamurph@cs.clemson.edu
mailto:sebgoa@clemson.edu
http://dx.doi.org/10.1016/j.future.2010.02.011


1272 M.A. Murphy, S. Goasguen / Future Generation Computer Systems 26 (2010) 1271–1281

Fig. 1. A use case for Virtual Organization Clusters, in which pilot jobs are used to reserve physical resources to host virtual machines. User jobs are then privately scheduled
to run in the virtual machines, using an overlay network to create a virtual cluster. It should be noted that the user submits her job(s) to a resource abstraction of the VO
Server, which autonomically handles the creation and destruction of virtual environments. The user is unaware of the details of this environment management.

The motivation for the Virtual Organization Cluster Model and
Virtual Organization Clusters (VOCs) built according to themodel is
to create a virtual cluster environment that is homogeneous across
sites, autonomically self-provisioned, transparent to end users,
implementable in a phased and non-disruptivemanner, optionally
customizable by Virtual Organizations, and designed according
to a specification that permits formal analysis. Transparency
is achieved by designing the system so that no submission
endpoint middleware is needed, and VOC technologies can be
added to execution endpoints with minimal disruption of existing
middleware. Moreover, grid sites that choose to provide VOCsmay
provide them transparently, so that neither the user nor the VO is
aware that execution is actually occurring on a VM. Conversely, a
site and a VOmay choose to permit the VO to supply the VOC image
(Fig. 1), thereby allowing the VO to have optional administrative
access for software stack and policy customization.
The remainder of this paper is organized as follows. Related

work is presented in Section 2, after which the high-level Virtual
Organization Cluster Model is described in Section 3. Section 4
describes a prototype implementation of a Virtual Organization
Cluster and associated physical testbed, with test results following
in Section 5. Finally, Section 6 presents the conclusions and
describes future work.

2. Related work

Virtualization at the Operating System (OS) level, originally
developed for IBM mainframe systems in the late 1960s, permits
an operating system installed directly on the computational
metal, known as the ‘‘host’’ system, to run a second ‘‘guest’’
operating system or ‘‘appliance’’ inside a virtual container.
Virtualization systems allow architecture-compatible software
systems to be decoupled from the underlying physical hardware
implementation, thereby allowing computation to be location
independent [9]. Virtualization of grid systems, first proposed
in [3], offers substantial benefits to grid users and system
administrators. Users of virtualized systems can be granted
administrative access rights to their virtual machines, thereby
allowing end-user customization of the software environment

to support current and legacy applications. Since the hardware
administrators retain control of the Virtual Machine Monitors
(VMMs) or hypervisors, coarse-grained resource controls can be
implemented on a per-VM basis, allowing hardware resources
to be shared among different VMs [3]. Higher-level system
components may also be virtualized; examples include dynamic
service overlays [10], cloud storage frameworks [11], and virtual
networking systems such as ViNe [12], VNET [13], VDE [14], and
IPOP [15]. Virtualization at the application layer has been realized
in systems such as In-VIGO [6].
Globus Virtual Workspaces, implemented as part of the Globus

Nimbus toolkit, provide a lease-oriented mechanism for sharing
resources on grid systems with fine-grained control over resource
allocation. A Virtual Workspace is allocated from a description
of the hardware and software requirements of an application,
allowing the workspace to be instantiated and deployed on a per-
application basis. Following the construction of the environment,
the Workspace must be explicitly deployed on a host site, after
which it can be directly accessed to run computational jobs [5].
By utilizing a leasing model, Virtual Workspaces can provide
high-level, fine-grained resource management to deliver specific
Quality of Service guarantees to different applications using a
combination of pre-arranged and best-effort allocations [16]. By
leasing multiple resources simultaneously, Virtual Workspaces
may be aggregated into clusters [17].
Selection and final customization of VM appliances to match

the requirements of individual jobs are accomplished via ‘‘con-
textualization,’’ a process by which job requirements are used to
make minor configuration changes, such as network and DNS set-
tings, to an existing appliance [18,19]. Contextualization is done
once per VM invocation, just prior to boot time, and involves in-
jecting configuration data into the VM image prior to initializa-
tion of the instance. A centralized ‘‘context broker’’ provides an
XML description of the configuration parameters to be set on a per-
appliance basis [20]. This contextualization processmay occur dur-
ing workspace scheduling [21].
For performance reasons, workspace jobs should have a

sufficient run length so as to make the overhead of leasing and
starting a workspace relatively small. Given the non-trivial data



Download English Version:

https://daneshyari.com/en/article/424759

Download Persian Version:

https://daneshyari.com/article/424759

Daneshyari.com

https://daneshyari.com/en/article/424759
https://daneshyari.com/article/424759
https://daneshyari.com

