
Future Generation Computer Systems 64 (2016) 61–74

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Workflow-and-Platform Aware task clustering for scientific workflow
execution in Cloud environment
Jyoti Sahni, Deo Prakash Vidyarthi ∗
School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi-110067, India

h i g h l i g h t s

• Studies the effect of ineffective parallelism and system overheads on workflow execution in distributed environments.
• Establishes requirement of a task clustering technique which realizes maximum possible parallelismwhile minimizing system overheads and resource

wastage.
• Proposes an autonomic Workflow-and-Platform Aware (WPA) task clustering technique.
• Evaluates the proposed method with state-of-art algorithms on four scientific workflows.

a r t i c l e i n f o

Article history:
Received 6 January 2016
Received in revised form
22 March 2016
Accepted 4 May 2016
Available online 25 May 2016

Keywords:
Scientific workflows
Coarse and fine grain tasks
Task clustering
Load consolidation
Performance analysis

a b s t r a c t

A scientific workflow, usually consists of a good mix of fine and coarse computational granularity
tasks displaying varied runtime requirements. It has been observed that fine grained tasks incur more
scheduling overhead than their execution time, when executed on widely distributed platforms. Task
clustering is extensively used, in such situations, as a runtime optimization method which involves
combining multiple short duration tasks into a cluster, to be scheduled on a single resource. This helps
in minimizing the scheduling overheads of the fine grained tasks. However, tasks grouping curtails
the degree of parallelism and hence needs to be done optimally. Though a number of task clustering
techniques have been developed to reduce the impact of system overheads, they fail to identify the
appropriate number of clusters at each level of workflow in order to achieve maximum possible
parallelism. This work proposes a level based autonomic Workflow-and-Platform Aware (WPA) task
clustering technique which takes into consideration both; the workflow structure and the underlying
resource set size for task clustering. It aims to achieve maximum possible parallelism among the tasks
at a level of a workflow while minimizing the system overheads and resource wastage. A comparative
study with current state of the art task clustering approaches on four well-known scientific workflows
show that the proposed method significantly reduces the overall workflow execution time and at the
same time is able to consolidate the load onto minimum possible resources.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Research in diverse scientific domains (such as physics, bio-
informatics, earth science and astronomy) often involves execution
of complex large size applications for simulation and validation of
the behaviour of different real-world activities. Many of such large
scale scientific applications are usually constructed as workflows
which consists of loosely coupled set of computational tasks linked

∗ Corresponding author. Tel.: +91 11 26704738.
E-mail addresses: jyoti92_scs@jnu.ac.in (J. Sahni), dpv@mail.jnu.ac.in

(D.P. Vidyarthi).

through control and data dependencies [1]. The tasks comprising
a workflow may vary in size with a few tasks requiring short
run time (in tens of seconds), while some others may exhibit
reasonably large run time requirements (in tens of minutes) [2,3].
Since comprehensively these tasks represent substantial amount
of computation requirements, such complex workflows demand
high-performance distributed computing environmentswhere the
tasks may be distributed amongst multiple computing nodes in
order to complete their execution in a reasonable amount of time.
Traditionally, developers of scientific applications have been using
local workstations, supercomputers, clusters and grid platforms
for running such workflows. A number of workflow management
systems (WMSs) such as Pegasus [4], ASKALON [5], TAVERNA [6],
Apache Tez [7] and Microsoft Dryad [8] have been designed

http://dx.doi.org/10.1016/j.future.2016.05.008
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.05.008
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.05.008&domain=pdf
mailto:jyoti92_scs@jnu.ac.in
mailto:dpv@mail.jnu.ac.in
http://dx.doi.org/10.1016/j.future.2016.05.008


62 J. Sahni, D.P. Vidyarthi / Future Generation Computer Systems 64 (2016) 61–74

to facilitate execution of scientific workflows on distributed
environments. Of late, Cloud computing has emerged as a utility-
oriented distributed computing model which may be exploited for
execution of huge and complex scientific applications. However,
running these applications in widely distributed environments
such as Cloud may involve significant system overheads [9]. This
may adversely affect the overall execution time of the workflow.
Further, execution of these applications in pay-as-you-go Cloud
model without considering the effect of these delays may also
result in additional financial overheads on the user. A cost and
time effectiveworkflowexecution in distributed environment thus
demands minimization of the overheads incurred.

The overheads imposed by WMSs and the execution environ-
ment for the execution of large scale scientific workflows can be
classified into four major delays [9]: queue delay, workflow en-
gine delay, job postscript delay, and data transfer delay. A number
of optimization techniques such as task clustering [10], job throt-
tling [11], data pre-staging [12] and over-provisioning [13] have
been developed and employed to target different delay classes and
to reduce their effect on the overall execution timeof theworkflow.
Of these different optimization techniques, clustering techniques
employed to increase the computational granularity of tasks by
merging smaller tasks into a cluster based on certain clustering
parameters are of particular interest. This helps in reducing the
queue waiting time due to decreased number of tasks. However,
tasks clustering limits the degree of parallelism and hence should
be done optimally and judicially. Too few clusters limit parallelism
opportunity while too many clusters result in increased system
overheads often exceeding the ideal run time [14]. Although, a
number of task clustering techniques have been developed for re-
ducing the impact of system overheads on workflow execution in
a distributed environment, they fail to identify a clustering which
allows maximum possible parallelism among tasks at a level of
a workflow while limiting the system overheads and resource
wastage. This is because most of the existing clustering techniques
depend upon the user to specify the number (and sometimes con-
stitution) of clusters. This is not only cumbersome for the user but
may also result in an inept clustering of tasks in case the users do
not have a good knowledge of the workflow structure and/or the
underlying distributed environment.

This work proposes an autonomic Workflow-and-Platform
Aware (WPA) task clustering technique which takes into consid-
eration both the workflow structure and the underlying resource
set size to obtain a clustering that allows maximum possible par-
allelism among tasks at a level of a workflowwhile minimizing the
system overheads and resource wastage. Two important points,
considered in the proposed work, are as follows.

(a) Limited resource wastage due to ineffective parallelism: the algo-
rithm ensures that the clustering of the parallel tasks at a level
will result in limited resourcewastage. For this, it is ascertained
that the clustering allows execution of only those tasks in par-
allel that improves the overall run time of the workflow.

(b) Minimum queuing overhead: the algorithm ensures that the
parallelism is sufficiently coarse so that the cost of managing
parallelism is not that significant as the cost of doing parallel
work.

Embraced with these features, the proposed approach not only
helps in improving the run time performance of a workflow
but also results in consolidating the load to minimum possible
resources at each level in the workflow execution. Consequently,
this helps in increasing the ability of the underlying resource set to
accommodate more number of applications.

The rest of this paper is organized as follows. Section 2
discusses the related work. Section 3 provides an overview of the
scientific workflow applicationmodel and theworkflow execution

architecture assumed in this work. Section 4 details the proposed
clustering algorithm. Section 5 presents the simulation experiment
done to evaluate the performance of the proposed work followed
by the discussion on the results. Finally, Section 6 concludes the
work.

2. Related work

Several research studies have been conducted in the past that
analyses different system overheads involved in the execution of
scientific workflow applications in a widely distributed environ-
ment such as grid and cloud [15,16,9]. Stratan et al. [15] proposed
amethodology for testing gridworkflowengines based on realistic,
repeatable testing capable of characterizing five aspects: overhead,
raw performance, stability, scalability and reliability. They noted
that many times the main bottleneck in a busy system is the head
node and therefore the head node resource consumption should
not be ignored. Prodan et al. [16] presented a systematic and com-
plete classification of overheads that occur while executing sci-
entific workflows in a dynamic grid environment. Chen et al. [9]
further extended the work of [16] by measuring the distribution
and overlap of major overheads imposed by WMSs and execution
environments. The existence of system overheads, as identified by
these works, establishes the need for employing techniques such
as task clustering for performance improvement.

Task clustering for performance improvement of scientific
applications running in distributed platforms has been addressed
in a number of research contributions. The objective is to group a
number of fine-grained tasks into coarse-grained tasks and to run
it on a single resource. This helps in saving the queuing overhead
when resources are limited and in reducing the data transfer
time when grouped tasks share some input data. However, tasks
grouping may limit the degree of inherent parallelism and hence
needs to be done optimally and judicially [14].

Several works have addressed task granularity control of
bag-of-tasks (BOT) applications. Muthuvelu et al. [17] proposed
a clustering algorithm that groups bag of tasks based on the
processing time of tasks on the resources. The algorithm sorts
the resources in decreasing order of their processing capacity
(expressed in MIPS) and groups the tasks to a resource up to its
resource capacity. This process is repeated until all the tasks are
grouped and assigned to some resources. Ang et al. [18] extended
the work of [17] and proposed a framework for bandwidth-aware
job grouping based scheduling for improving dissemination of
jobs in grid computing. Liu and Liao [19] proposed a grouping
strategy based adaptive fine grained job scheduling algorithm
which clusters jobs on the basis of resource characteristics. Later
Muthuvelu et al. [20] extended their work in [17] and presented
a parameterized job grouping strategy in which jobs are grouped
based on their processing requirements, resource policies, network
conditions and user’s QoS requirements. More lately, in [21],
Muthuvelu et al. proposed policies and approaches to decide
granularity of a group of tasks based on the task processing
requirements and network utilization constraints while satisfying
user’s QoS requirements (budget and deadline). These techniques
though significantly reduce scheduling and queuing overheads,
however, they do not consider dependencies between the tasks
and thus are suitable only for applications with independent tasks.

Task clustering in scientific workflows has also been addressed
in a number of research contributions. [22–24] studied the tasks
clustering on an unbounded number of fully connected processors.
Zomaya and Chan [25] proposed a genetic algorithm based task
clustering algorithm for fixed number of processors. Since these
works are targeted towards multiprocessor systems, they focus
only on reducing the data communication delay and do not



Download English Version:

https://daneshyari.com/en/article/424783

Download Persian Version:

https://daneshyari.com/article/424783

Daneshyari.com

https://daneshyari.com/en/article/424783
https://daneshyari.com/article/424783
https://daneshyari.com

