
Future Generation Computer Systems 26 (2010) 291–303

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

DHT-based lightweight broadcast algorithms in large-scale
computing infrastructures
Kun Huang a, Dafang Zhang b,∗
a School of Computer and Communication, Hunan University, Changsha, Hunan Province 410082, PR China
b School of Software, Hunan University, Changsha, Hunan Province 410082, PR China

a r t i c l e i n f o

Article history:
Received 20 June 2008
Received in revised form
12 August 2009
Accepted 29 August 2009
Available online 6 September 2009

Keywords:
Grid
Peer-to-Peer network
Distributed hash table
Broadcast
Load balancing

a b s t r a c t

Scalable and efficient broadcast is essential to large-scale computing infrastructures such as PlanetLab
and Grids. Previous broadcast algorithms exploit the greedy routing mechanisms of a Distributed Hash
Table (DHT) to achieve the scalability. However, they suffer from load unbalancing and high overhead
for constructing and maintaining a distributed broadcast tree (DBT). This paper presents DHT-based
lightweight broadcast algorithms to overcome these limitations. Our algorithms leverage the topology
and routing mechanism of Chord to select appropriate children of each node in a top-down approach.
According to the node identifier distribution of Chord, we propose two broadcast algorithms over DHT.
When nodes are uniformly distributed in the identifier space, a token-based broadcast algorithm is
proposed, where each node selects the finger nodes as its children by a token value. When nodes are
arbitrarily distributed in the identifier space, a partition-based broadcast algorithm is proposed, where
each node partitions its identifier space into two subspaces and selects the agent nodes in the subspaces
as its children. We show theoretically and experimentally that both token-based and partition-based
algorithms can implicitly build a balanced DBT from the novel routing paths of DHT, where the branching
factor is at most two and the tree height is O(log n) in a Chord of n nodes, without extra space for storing
children and additional overhead for explicitly maintaining the parent–child membership.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Large-scale computing infrastructures such as PlanetLab [1], E-
science Grids [2], and Enterprise Desktop Grids [3] have become
increasingly important for developing and deployingmany emerg-
ing distributed applications such as content distribution networks,
peer-to-peer systems, distributed games, and scientific computing.
These computing infrastructures typically consist of large numbers
of personal workstations and dedicated servers scattered around
the world. For example, PlanetLab (2008) currently consists of 870
nodes at 460 sites [4], and the planet-scale Grid has 100,000 CPUs,
mostly PCs and workstations [5]. As the size of the computing in-
frastructures continues to grow, it is very challenging for adminis-
trators to efficiently manage such large-scale dynamic distributed
systems.
Distributed information management systems [6–9] have been

extensively used in the large-scale computing infrastructures for
a broad range of network services such as network monitor and

∗ Corresponding author. Tel.: +86 0731 88821570.
E-mail addresses: huangkun@hunu.edu.cn (K. Huang), dfzhang@hunu.edu.cn

(D. Zhang).

management, service placement, resource management and task
scheduling, and content distribution. Distributed broadcast is one
of the fundamental primitives of distributed information manage-
ment systems to disseminate information on a global scale. For in-
stance, researchers replicate their programs on tens of thousands
of nodes before launching a distributed application, and adminis-
trators distribute software releases and patch updates on all the
federated nodes. Thus it is required to perform scalable and effi-
cient content dissemination across large-scale computing infras-
tructures.
In recent years, Peer-to-Peer (P2P) based broadcast algorithms

have been proposed to achieve scalability. There are two design
principles for a P2P-based broadcast algorithm according to over-
lay structures: tree-based and mesh-based approaches. The tree-
based approach constructs a tree overlay as a content delivering
structure, such as ESM [10], NICE [11], Scribe [12], and Bayeux [13].
Since the single tree structure is vulnerable to failure of an interior
node, multiple-tree structures such as SplitStream [14] and Coop-
Net [15] are proposed to improve the resilience, where each sub-
stream of content is delivered along one of multiple disjoint trees.
On the other hand, the mesh-based approach, such as Bullet [16],
FastReplica [17], Bullet’ [18], BitTorrent [19], and CoBlitz [20], con-
structs a data-driven mesh overlay as a swarm system, where
each node has a small set of neighbors to exchange data. Despite

0167-739X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2009.08.013

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:huangkun@hunu.edu.cn
mailto:dfzhang@hunu.edu.cn
http://dx.doi.org/10.1016/j.future.2009.08.013


292 K. Huang, D. Zhang / Future Generation Computer Systems 26 (2010) 291–303

these arguments [21,22] against the two approaches, the tree-
based approach is more suitable for large-scale computing infras-
tructures. This is because there is a large fraction of relatively
stable dedicated nodes, and the tree structure has the simplicity
and controlled overhead. Hence,wemainly focus on the tree-based
approach to broadcasting in large-scale computing infrastructures.
Structured P2P systems have been recently proposed, such as

Chord [23], CAN [24], Pastry [25], and Tapestry [26]. These struc-
tured systems use a Distributed Hash Table (DHT) as the routing
substructure, with good characteristics of scalability, load balanc-
ing, and fault tolerance. Thus, DHT-based broadcast is a promising
way in large-scale computing infrastructures. It is critical and cru-
cial for a DHT-based broadcast algorithm to meet scalability, ro-
bustness, and load balancing. First, the algorithm should scale well
to a large number of participating nodes with only a limited num-
ber of messages passing. Also it should have a low overhead of
constructing and maintaining a distributed broadcast tree (DBT).
Second, the algorithm should be robust to dynamics of node ar-
rivals and departures. Finally, the algorithm should ensure good
load balancing in the sense that the broadcast workload is evenly
distributed among all participating nodes in the DBT, without any
bottlenecks or hotspots of content delivery. Hence, load balancing
is essential for scalability and robustness of a P2P-based broadcast
algorithm.
Most DHT-based broadcast algorithms [6–8,12,14,15,27–32]

have been recently proposed to support efficient broadcasting on
large scale. These broadcast algorithms use the routing mech-
anisms of DHT to build up an overlay routing path between a
source node and each destination node. Then a DBT rooted at the
source node is constructed bymerging these routing paths. A DHT-
based broadcast algorithm has two approaches to constructing a
DBT: top-down and bottom-up approaches. For example, the k-
ary search based broadcast algorithm [31] adopts the top-down
approach, where starting with a source node, each node selects
its appropriate children, while the reverse-path forwarding based
broadcast algorithm [12] adopts the bottom-up approach, where
starting with all destination nodes, each node selects its appropri-
ate parent to a source node. The bottom-up approach facilitates
both aggregation and broadcast in the same DBT but consumes ex-
tra overhead on a node churn, while the top-down approach has
low overhead due to not explicitly maintaining the child-parent
membership. In this paper, our algorithms build a balanced DBT in
a top-down approach.
However, existing DHT-based broadcast algorithms suffer from

load unbalancing and high overhead. First, DHT is a greedy routing
algorithm. In the DHT, each node always forwards a searched key
to the closest preceding node in its finger table, whose identifier is
closer to the key in the identifier space. The greedy essence of DHT
results in that previous DHT-based broadcast algorithms, such as
the k-ary search based broadcast algorithm [31] and the reverse-
path forwarding based broadcast algorithm [12], construct a flat
and unbalancedDBT. Such aDBT causes a node to be a performance
bottleneck and a single failure on broadcasting. Second, these DHT-
based broadcast algorithms have high overhead of constructing
and maintaining a DBT with respect to a large number of parti-
cipating nodes. For example, the reverse-path forwarding based
broadcast algorithm [12] requires interior nodes to consume ex-
tra space for storing their children on reverse forwarding, which
leads to additional maintenance overhead on node dynamics.
Furthermore, these algorithms typically adopt the pushdown and
anycast methods [11,13] to tackle the node overloading by adjust-
ing the branching factors between nodes in a DBT. But, Bharambe
et al. [41] indicated that these adjustment methods result in a sig-
nificant number of non-DHT links that are present in the DBT but
are not part of the routing links of DHT. The non-DHT links not only
restrict the scalability of DBT, but also incur higher maintenance
overhead in the DBT due to the dynamic nodes.

To address above issues, this paper proposes DHT-based li-
ghtweight broadcast algorithms in the large-scale computing in-
frastructures to achieve both scalability and load balancing. Our
broadcast algorithms leverage a motivating observation of the
topology and routing mechanisms of Chord. In a 2m-node Chord,
when a source node broadcasts a large file such as software patches
to all other nodes, each node can appropriately select two of m
finger nodes as its children, instead of selecting one or all finger
nodes. The two-choice approach guarantees that each node has
at most two children and all nodes are traversed. Thus, the ba-
sic idea behind our algorithms is that a balanced DBT is implic-
itly constructed from the novel routing paths of Chord, without
explicit parent–child membership maintenance. According to the
node identifier distribution of Chord, we propose two broadcast
algorithms over DHT. (1) When nodes are uniformly distributed
in the identifier space, a token-based broadcast algorithm is pro-
posed, where each node selects the finger nodes as its children by a
token value. (2)When nodes are arbitrarily distributed in the iden-
tifier space, a partition-based broadcast algorithm [33] is proposed,
where each node partitions its identifier space into two subspaces
and selects the agent nodes in the subspaces as its children. The
partition-based algorithm generalizes the token-based algorithm,
and is also suitable for the uniform distribution of node identifiers.
We show theoretically experimental results show that both token-
based and partition-based algorithms can construct and maintain
a scalable and balanced DBT, where the branching factor is at most
two and the tree height is O(log n) in a Chord of n nodes, and needs
no extra space for storing children and no additional overhead for
explicitly maintaining the parent–child membership.
The rest of the paper is organized as follows. Section 2 intro-

duces the background of Chord and typical DHT-based broadcast
algorithms. In Section 3, we describe in detail our token-based and
partition-based broadcast algorithms over DHT. Section 4 presents
our experimental results. Related work is introduced in Sections 5
and 6 and concludes the paper.

2. Background

2.1. Chord overview

The Chord network is modeled as an undirected graph G =
(V , E), where the vertex set V contains n nodes and E is the set of
overlay links between nodes. Chord utilizes a SHA-1 hash function
to assign m-bit identifiers to both data objects and participating
nodes. A node’s identifier is produced by hashing the node’s IP
address, while an object’s identifier is produced by hashing the
object’s key. Both objects and nodes have the same identifier space
[0, 2m), and identifiers are ordered in an identifier circle modulo
2m. According to the node identifiers, Chord organizes nodes as
a ring topology in the circular space. An object’s identifier k is
assigned to the first node whose identifier is equal to or follows
k in the identifier space. This node is called the successor node
of the identifier k, denoted by Succ(k). In Chord, Pred(u) refers to
the immediate predecessor of node u, while Succ(u) refers to the
immediate successor of node u. Besides its immediate predecessor
and successor, each node u maintains a set of m finger nodes that
are spaced exponentially in the identifier space. The ith finger node
Finger(u, i) of node u is the first node that succeeds u by at least 2i
in the identifier space, that is Finger(u, i) = Succ((u+2i)mod 2m),
where 0 ≤ i ≤ m− 1.
Chord adopts a greedy finger routing algorithm [23] to recur-

sively (or iteratively) forward a query message with an object’s
identifier k to its successor node Succ(k) that contains a pair (k, v),
where v is the object’s value. When node uwants to lookup an ob-
ject’s identifier k, it forwards a query message with the identifier k
to its finger node Finger(u, j), which is closest to the successor node



Download	English	Version:

https://daneshyari.com/en/article/424800

Download	Persian	Version:

https://daneshyari.com/article/424800

Daneshyari.com

https://daneshyari.com/en/article/424800
https://daneshyari.com/article/424800
https://daneshyari.com/

